Show simple item record

dc.contributor.authorChimunhu, Prosper
dc.contributor.supervisorErkan Topalen_US
dc.contributor.supervisorRoohollah Shirani Faradonbehen_US
dc.contributor.supervisorAjak Duany Ajaken_US
dc.date.accessioned2025-09-26T03:45:23Z
dc.date.available2025-09-26T03:45:23Z
dc.date.issued2025en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/98568
dc.description.abstract

For decades, standalone mathematical models have dominated the optimisation of production schedules in underground mining. However, recurrent inconsistencies between schedule forecasts and actual production suggest the robustness of optimal solutions is impaired by inaccurate inputs. To address this, the study leverages emerging Machine Learning (ML) applications to generate ML-predicted dilution schedule inputs on a per-stope granularity, improving the schedule’s forecast precision by at least 3.6% and 1.6% for mined tonnes and Net Present Value, respectively.

en_US
dc.publisherCurtin Universityen_US
dc.titleProduction Scheduling Optimisation Using Mathematical Programming and Machine Learning for Underground Mining Operationsen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)en_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidChimunhu, Prosper [0000-0001-6288-5551]en_US
dc.date.embargoEnd2027-09-08


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record