Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Evaluation of Non-linear Fluid Flow Through Rough-Walled Fractures

    Access Status
    Fulltext not available
    Authors
    Sharifzadeh, Mostafa
    Javadi, M.
    Shahriar, K.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sharifzadeh, M. and Javadi, M. and Shahriar, K. 2010. Evaluation of Non-linear Fluid Flow Through Rough-Walled Fractures. Amirkabir Journal of Civil and Environmental Engineering. 42 (2): pp. 21-28.
    Source Title
    Amirkabir University Civil Engineering Journal
    URI
    http://hdl.handle.net/20.500.11937/9858
    Collection
    • Curtin Research Publications
    Abstract

    In many geological structures, the matrix permeability is negligible and the fractures are the main flow paths. The fluid flow and particle transport through rock fracture are increasingly important research topics mainly to the demands for design, operation and safety assessments of underground/ surface constructions. In this paper, single-phase fluid flow through a rock fracture is studied. Computational domain for an artificial three-dimensional fracture is generated and used for numerical fluid flow simulations. Both laminar and turbulent flow simulations are performed by using finite element method for a wide range of inlet velocities. The calculated average pressure drops, between consecutive vertical sections are compared to describe the flow rate dependant pressure drop. The simulations results show that, (i) the predicted static pressure drop for turbulent flow simulation was roughly 3% to 17% more than laminar simulation at Reynolds number of 4.5 to 89.5, respectively, and (ii) the Forchheimer law is fitted very well to flow simulation results and critical Reynolds number of 15 is suggested.

    Related items

    Showing items related by title, author, creator and subject.

    • Numerical simulations of fluid flow through a single rough walled fracture
      Hosseinian, Armin (2011)
      The morphological properties of rock fractures may have a significant influence on their hydromechanical behaviour. Fracture surface roughness could change the fluid flow regime from laminar to turbulent, while it causes ...
    • Correlations Developed for Estimation of Hydraulic Parameters of Rough Fractures Through the Simulation of JRC Flow Channels
      Rasouli, Vamegh; Hosseinian, Armin (2011)
      The hydro-mechanical response of fractured rock masses is complex, due partly to the presence of fractures at different scales. Surface morphology has a significant influence on fluid flow behaviour of a fracture. Different ...
    • Effect of the Fracture Fill on the Dispersion and Attenuation of Elastic Waves in a Porous Rock with Aligned Fractures
      Kong, L.; Gurevich, Boris; Mϋller, Tobias; Wang, Y.; Yang, H. (2013)
      When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.