Kernel density estimation for spatial processes: the L_1 theory
Access Status
Authors
Date
2004Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description. Copyright © 2004 Elsevier B.V. All rights reserved
Collection
Abstract
The purpose of this paper is to investigate kernel density estimators for spatial processes with linear or nonlinear structures. Sufficient conditions for such estimators to converge in L1 are obtained under extremely general, verifiable conditions. The results hold for mixing as well as for nonmixing processes. Potential applications include testing for spatial interaction, the spatial analysis of causality structures, the definition of leading/lagging sites, the construction of clusters of comoving sites, etc.
Related items
Showing items related by title, author, creator and subject.
-
Lehmann, E.; Phatak, Aloke; Soltyk, S.; Chia, J.; Lau, R.; Palmer, M. (2013)Understanding weather and climate extremes is important for assessing, and adapting to, the potential impacts of climate change. The design of hydraulic structures such as dams, drainage and sewers, for instance, relies ...
-
Mamuse, Antony (2010)The Kalgoorlie Terrane of the Yilgarn Craton, Western Australia, containing about 60% (~11 Mt) of the world’s known komatiite-hosted nickel sulphide resources, is the world’s best studied and economically most important ...
-
Zhang, Zehua; Song, Yongze ; Wu, Peng (2022)Geographical detector (GD) is a method to measure spatial associations using a power of determinant (PD) value that compares the variance of data within spatial zones and in the whole study area. Recent studies have ...