Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimal Joint Source and Relay Beamforming for MIMO Relays with Direct Link

    133770_133770.pdf (192.6Kb)
    Access Status
    Open access
    Authors
    Rong, Yue
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rong, Yue. 2010. Optimal Joint Source and Relay Beamforming for MIMO Relays with Direct Link. IEEE Communications Letters. 14 (5).
    Source Title
    IEEE Communications Letters
    DOI
    10.1109/LCOMM.2010.05.092429
    ISSN
    1089-7798
    Faculty
    Department of Electrical and Computer Engineering
    School of Engineering
    Faculty of Science and Engineering
    Remarks

    Copyright © 2010 IEEE This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

    URI
    http://hdl.handle.net/20.500.11937/10383
    Collection
    • Curtin Research Publications
    Abstract

    In this letter, we investigate the optimal structure of the source precoding matrix and the relay amplifying matrix for non-regenerative multiple-input multiple-output (MIMO) relay communication systems with the direct source-destination link. We show that both the optimal source precoding matrix and the optimal relay amplifying matrix have a beamforming structure. Based on this structure, an iterative joint source and relay beamforming algorithm is developed to minimize the mean-squared error (MSE) of the signal waveform estimation. Numerical example demonstrates an improved performance of the proposed algorithm.

    Related items

    Showing items related by title, author, creator and subject.

    • Signal processing algorithms for multiuser MIMO relay communication systems
      Khandaker, Muhammad Ruhul Amin (2012)
      The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can ...
    • Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications
      Rong, Yue (2012)
      In this paper, we investigate the challenging problem of joint source and relay optimization for two-way linear non-regenerative multiple-input multiple-output (MIMO) relay communication systems. We derive the optimal ...
    • Optimal Joint Source and Relay Beamforming for Parallel MIMO Relay Networks
      Toding, Apriana; Khandaker, Muhammad; Rong, Yue (2010)
      In this paper, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. We show that ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.