Traffic flow forecasting neural networks based on exponential smoothing method
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
This paper discusses a neural network development approach based on an exponential smoothing method which aims at enhancing previously used neural networks for traffic flow forecasting. The approach uses the exponential smoothing method to pre-process traffic flow data before implementing on neural networks for training purpose. The pre-processed traffic flow data, which is lesser non-smooth, discontinuous and lumpy than the original traffic flow data, is more suitable to use for neural network training. This neural network development approach was evaluated by forecasting real-time traffic conditions on a section of the freeway in Western Australia. Regarding training errors which indicate capability in fitting traffic flow data, the neural network models developed by the proposed approach was capable to achieve more than 20% of the rate of improvement relative to the neural network developed based on the original traffic flow data. Regarding testing errors which indicate generalization capability for traffic flow forecasting, the neural network models developed by the proposed approach was capable in achieving more than 8% of the rate of improvement relative to the neural networks developed based on the original traffic flow data.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Kit Yan; Dillon, Tharam; Singh, Jaipal; Chang, Elizabeth (2011)This paper proposes a novel neural network (NN) training method that employs the hybrid exponential smoothing method and the Levenberg–Marquardt (LM) algorithm, which aims to improve the generalization capabilities of ...
-
Chan, Kit Yan; Yiu, Ka Fai (2014)Neural networks have commonly been applied for traffic flow predictions. Generally, the past traffic flow data captured by on-road detector stations, is used to train the neural networks. However, recently research mostly ...
-
Chan, Kit; Khadem, Saghar; Dillon, Tharam; Palade, Vasile; Singh, Jaipal; Chang, Elizabeth (2012)Over the past two decades, neural networks have been applied to develop short-term traffic flow predictors. The past traffic flow data, captured by on-road sensors, is used as input patterns of neural networks to forecast ...