Adaption to extreme acidity and osmotic stress
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Environments that are either acidic or have high osmotic potentials are found across the globe in a range of natural and anthropogenic systems. The organisms capable of inhabiting these systems are diverse, including archaea, bacteria and eukaryotes. However, environments where extreme acidity is combined with osmotic stress deriving from elevated concentrations of sodium chloride are seemingly rare. Subsequently, there is a relatively small number of species which have been identified and shown to tolerate both of these stresses simultaneously, and as a result the mechanisms that permit life in these harsh conditions has not been extensively studied. Recent genomic and proteomic studies indicate that several strategies may be employed by acidophilic microorganisms to combat the combined effects of low pH and high osmotic stress, most notably the production of osmo-protectants and the maintenance of membrane integrity. This chapter focuses on iron- and sulfur-oxidising microorganisms, which are able to tolerate acidic conditions, the effect of osmotic stress induced by salinity on their survival, and mechanisms used to survive these stresses both independently and in combination.
Related items
Showing items related by title, author, creator and subject.
-
Lowe, R.; Lord, M.; Rybak, K.; Trengove, R.; Oliver, Richard; Solomon, P. (2008)A non-targeted metabolomics approach was used to identify significant changes in metabolism upon exposure of the wheat pathogen Stagonospora nodorum to 0.5 M NaCl. The polyol arabitol, and to a lesser extent glycerol, was ...
-
Khaleque, H.; Kaksonen, A.; Boxall, N.; Watkin, Elizabeth (2018)In this study, the differential protein expression of the acidophilic halophile, Acidihalobacter prosperus DSM 14174 (strain V6) was studied with the aim of understanding its mechanisms of tolerance to high chloride ion ...
-
Zammit, Carla; Mangold, S.; rao Jonna, V.; Mutch, Lesley; Watling, Helen; Dopson, M.; Watkin, Elizabeth (2012)High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known ...