Show simple item record

dc.contributor.authorAchuthan, Nirmala
dc.contributor.authorAchuthan, Narasimaha
dc.contributor.authorSimanihuruk, M.
dc.date.accessioned2017-01-30T11:27:50Z
dc.date.available2017-01-30T11:27:50Z
dc.date.created2012-02-15T20:00:47Z
dc.date.issued2011
dc.identifier.citationAchuthan, Nirmala and Achuthan, N.R. and Simanihuruk, M. 2011. The Nordhaus-Gaddum problem for the k-defective chromatic number of a P4-free graph. The Australasian Journal of Combinatorics. 49: pp. 3-13.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/11944
dc.description.abstract

A graph is (m, k)-colourable if its vertices can be coloured with m colours such that the maximum degree of the subgraph induced on vertices receiving the same colour is at most k. The k-defective chromatic number Xk(G) of a graph G is the least positive integer m for which G is (m, k)-colourable. The Nordhaus-Gaddum problem is to find sharp bounds for Xk(G)+Xk(G) and Xk(G). Xk(G) over the set of all graphs of order p where G is the complement of the graph G. In this paper we obtain a sharp upper bound for Xk(G)+Xk(G), where G is a P4-free graph of order p and k = 1 or 2.

dc.publisherCentre for Discrete Mathematics and Computing
dc.titleThe Nordhaus-Gaddum problem for the k-defective chromatic number of a P4-free graph
dc.typeJournal Article
dcterms.source.volume49
dcterms.source.startPage3
dcterms.source.endPage13
dcterms.source.issn1034-4942
dcterms.source.titleThe Australasian Journal of Combinatorics
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record