Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper presents a systematic study of a direct-flame solid oxide fuel cell (DF-SOFC) operating on methanol and ethanol flames by SEM, EIS, I-V polarization and mass spectrometer (MS) characterizations and numerical simulation. The experimental study demonstrated that, by adopting a conventional Ni + Sm0.2Ce0.8O1.9 (SDC) anode, irreversible carbon deposition and a drop of cell performance was observed when running the cell on an ethanol flame, while no carbon was deposited by operating on a methanol flame. Fuel cell stability tests indicated significant degradation in performance after 3 h of operation on an ethanol flame, while no degradation was observed after 30 h of operation on a methanol flame. A simple qualitative explanation of the difference observed in the electrochemical performance for the fuel cell operating on a methanol flame and an ethanol flame is presented based on numerical simulation. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Wang, K.; Ahn, J.; Shao, Zongping (2008)A no-chamber solid-oxide fuel cell that operated on a fuel-rich ethanol flame was reported. Heat produced from the combustion of ethanol thermally sustained the fuel cell at a temperature range of 500-830 °C. Considerable ...
-
Wang, K.; Ran, R.; Hao, Y.; Shao, Zongping; Jin, W.; Xu, N. (2008)A no-chamber solid-oxide fuel cell operated on a fuel-rich ethanol flame was reported. Heat produced from the combustion of ethanol thermally sustained the fuel cell at a temperature of 500-830 °C. Considerable amounts ...
-
Wang, K.; Ahn, J.; Shao, Zongping (2009)A no-chamber solid-oxide fuel cell that operated on a fuelrich ethanol flame was reported. Heat produced from the combustion of ethanol thermally sustained the fuel cell at a temperature range of 500 ~ 830 °C. Considerable ...