Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Formation of Aromatic Structures during the Pyrolysis of Bio-oil

    Access Status
    Fulltext not available
    Authors
    Wang, Yi
    Li, X.
    Mourant, Daniel
    Gunawan, Richard
    Zhang, Shu
    Li, Chun-Zhu
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, Y. and Li, X. and Mourant, D. and Gunawan, R. and Zhang, S. and Li, C. 2012. Formation of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Fuels. 26 (1): pp. 241-247.
    Source Title
    Energy & Fuels
    DOI
    10.1021/ef201155e
    ISSN
    08870624
    School
    Curtin Centre for Advanced Energy Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/14020
    Collection
    • Curtin Research Publications
    Abstract

    The pyrolysis of biomass to produce bio-oil is a very effective way of biomass use. Bio-oil undergoes drastic structural changes as it is upgraded into biofuels or used as a fuel for gasification/combustion. The evolution of aromatic ring systems in bio-oil is a key consideration in bio-oil use. A bio-oil sample produced from the fast pyrolysis of mallee wood at 500 °C, its lignin-derived oligomers, and pure cellulose have been pyrolyzed in a novel two-stage fluidized-bed/fixed-bed reactor at temperatures between 350 and 850 °C. The product tars were characterized with ultraviolet (UV) fluorescence spectroscopy. Our results indicate that significant portions of aromatic ring systems in the bio-oil could turn/polymerize into solids not soluble in CHCl3 + CH3OH during the pyrolysis at relatively low temperatures, e.g., 350–400 °C. This process can be enhanced by the presence of cellulose-/hemicellulose-derived species in the bio-oil, which are reactive and produce radicals to enhance the polymerization reactions. The pyrolysis of cellulose-derived species in the bio-oil tended to form additional very large aromatic ring systems at temperatures higher than 700 °C.

    Related items

    Showing items related by title, author, creator and subject.

    • Transformation of bio-oil during pyrolysis and reforming
      Wang, Yi (2012)
      The pyrolysis of biomass is a very effective means of energy densification. With the bio-char returned to the field as a soil conditioner and for carbon bio-sequestration, bio-oil can be used in many ways, including being ...
    • High energy density fuels derived from mallee biomass: fuel properties and implications
      Abdullah, Hanisom binti (2010)
      Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
    • Formation of coke during the pyrolysis of bio-oil
      Wang, Yi; Mourant, Daniel; Hu, Xun; Zhang, Shu; Lievens, Caroline; Li, Chun-Zhu (2013)
      Bio-oil from the pyrolysis of biomass can be upgraded into high quality liquid biofuels or utilised as a feedstock to boilers and gasifiers. The coke formation is a particularly serious problem for the upgrading of bio-oil ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.