Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+δ in the electrode

    Access Status
    Fulltext not available
    Authors
    Shen, J.
    Yang, G.
    Zhang, Z.
    Tadé, M.
    Zhou, W.
    Shao, Zongping
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shen, J. and Yang, G. and Zhang, Z. and Tadé, M. and Zhou, W. and Shao, Z. 2017. Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+δ in the electrode. Journal of Power Sources. 342: pp. 644-651.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2016.12.109
    ISSN
    0378-7753
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150104365
    http://purl.org/au-research/grants/arc/DP160104835
    URI
    http://hdl.handle.net/20.500.11937/14158
    Collection
    • Curtin Research Publications
    Abstract

    Symmetrical solid oxide fuel cells (SSOFCs) show many advantageous features as compared with conventional cells with nickel cermet anode and oxide cathode. A K2NiF4-type layer-structured oxide, La0.6Sr1.4MnO4+δ (LSMO4), was reported to be a potential electrode for SSOFCs, and the modification of LSMO4 surface with samaria-doped ceria (SDC) and NiO was found to be the key in improving performance. In this study, the swapping of roles for SDC and LSMO4 in electrodes of SSOFCs is exploited, i.e., SDC is applied as the scaffold and LSMO4 as the surface modifier. Different from pristine LSMO4, the impregnated LSMO4 demonstrates amorphous phase. Compared to NiO-SDC impregnated LSMO4, NiO-LSMO4/SDC electrodes show a superior cathodic performance with an area specific resistance of 0.1 Ω cm2 at 700 °C. Under optimized conditions, maximum power densities of 714 and 108 mW cm−2 at 800 °C are achieved for an electrolyte-supported symmetrical single cell with a NiO-LSMO4/SDC electrode operating with hydrogen and methane, respectively. The difference in performance of the electrodes built by swapping the role and function of the SDC and LSMO4 phases is discussed, and a possible mechanism responsible for such different behaviours in cell power outputs via the impregnation of LSMO4 (NiO)+SDC electrodes is proposed.

    Related items

    Showing items related by title, author, creator and subject.

    • Highly active and stable Er0.4Bi1.6O3 decorated La0.76Sr0.19MnO3+δ nanostructured oxygen electrodes for reversible solid oxide cells
      Ai, N.; Li, N.; He, S.; Cheng, Y.; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2017)
      Bismuth based oxides have excellent ionic conductivity and fast oxygen surface kinetics and show promising potential as highly active electrode materials in solid oxide cells (SOCs) such as solid oxide fuel cells (SOFCs) ...
    • Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization
      Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)
      Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...
    • Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium
      Li, Z.; Liang, Y.; Jiang, San Ping; Shan, X.; Lin, M.; Xu, C. (2012)
      The performance of mixture of methanol and ethylene glycol (EG) oxidation has been studied on both Pt and Pd electrodes in alkaline medium. The activity of EG oxidation is better than that of methanol oxidation and the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.