Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Iron incorporated Ni-ZrO2 catalysts for electric power generation from methane

    Access Status
    Fulltext not available
    Authors
    Zhu, H.
    Wang, Wei
    Ran, R.
    Su, C.
    Shi, H.
    Shao, Zongping
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhu, H. and Wang, W. and Ran, R. and Su, C. and Shi, H. and Shao, Z. 2012. Iron incorporated Ni-ZrO2 catalysts for electric power generation from methane. International Journal of Hydrogen Energy. 37 (12): pp. 9801-9808.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2012.03.060
    ISSN
    0360-3199
    URI
    http://hdl.handle.net/20.500.11937/14261
    Collection
    • Curtin Research Publications
    Abstract

    On the purpose to perform as functional layer of SOFCs operating on methane fuel, NiFe–ZrO2 alloy catalysts have been synthesized and investigated for methane partial oxidation reactions. Ni4Fe1–ZrO2 shows catalytic activity comparable to that of Ni–ZrO2 and superior to other Fe-containing catalysts. In addition, O2-TPO analysis indicates iron is also prone to coke formation; as a result, most of NiFe–ZrO2 catalysts do not show improved coking resistance than Ni–ZrO2. Anyway, Ni4Fe1–ZrO2 (Ni:Fe = 4:1 by weight) prepared by glycine-nitrate process shows somewhat less carbon deposition than the others. However, Raman spectroscopy demonstrates that the addition of Fe does reduce the graphitization degree of the deposited carbon, suggesting the easier elimination of carbon once it is deposited over the catalyst. Ni4Fe1–ZrO2 has an excellent long-term stability for partial oxidation of methane reaction at 850 °C. A solid oxide fuel cell with conventional nickel cermet anode and Ni4Fe1–ZrO2 functional layer is operated on CH4–O2 gas mixture to yield a peak power density of 1038 mW cm−2 at 850 °C, which is comparable to that of hydrogen fuel. In summary, the Ni4Fe1–ZrO2 catalyst is potential catalyst as functional layer for solid-oxide fuel cells operating on methane fuel.

    Related items

    Showing items related by title, author, creator and subject.

    • Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane
      Wang, W.; Ran, R.; Shao, Zongping (2011)
      Ni-Al2O3 catalyst is modified with Li 2O3, La2O3 and CaO promoters to improve its resistance to coking. These catalysts are used as the materials of the anode catalyst layer in solid-oxide fuel cells operating on methane. ...
    • Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane
      Wang, W.; Ran, R.; Shao, Zongping (2011)
      Ru-Al2O3 composites with varied Ru contents were synthesized by a glycine-nitrate combustion technique. Their potential application as anode catalyst functional layer of a solid-oxide fuel cell operating on methane fuel ...
    • Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation
      Wang, W.; Su, C.; Ran, R.; Park, H.; Kwak, C.; Shao, Zongping (2011)
      Different concentrations of copper are added to LiLaNi-Al2O 3 to improve the electronic conductivity property for application as the materials of the anode catalyst layer for solid oxide fuel cells operating on methane. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.