Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum

    Access Status
    Fulltext not available
    Authors
    Hane, J.
    Lowe, R.
    Solomon, P.
    Tan, Kar-Chun
    Schoch, C.
    Spatafora, J.
    Crous, P.
    Kodira, C.
    Birren, B.
    Galagan, J.
    Torriani, S.
    McDonald, B.
    Oliver, Richard
    Date
    2007
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    HANE JK, LOWE, RGT, SOLOMON, PS, TAN K-C, SCHOCH, CL, SPATAFORA, JWB, CROUS, PC, KODIRA, C, BIRREN, BW, GALAGAN, JE, TORRIANI, SFF, MCDONALD, BA & OLIVER (2007) Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19 3347-3368
    DOI
    10.1105/tpc.107.052829
    Faculty
    Department of Environmental & Agriculture
    School of Agriculture and Environment
    Faculty of Science and Engineering
    Remarks

    A copy of this item may be available from Professor Richard Oliver

    Email: Richard.oliver@curtin.edu.au

    URI
    http://hdl.handle.net/20.500.11937/14890
    Collection
    • Curtin Research Publications
    Abstract

    Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.

    Related items

    Showing items related by title, author, creator and subject.

    • Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum
      Tan, Kar-Chun; Heazlewood, J.; Millar, A.; Oliver, Richard; Solomon, P. (2009)
      The fungus Stagonospora nodorum is the causal agent of stagonospora nodorum blotch (syn.leaf and glume blotch) disease of wheat. The Gna1-encoded Ga protein is an important signaltransduction component in the fungus, which ...
    • Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
      Bringans, S.; Hane, J.; Casey, T.; Tan, Kar-Chun; Lipscombe, R.; Solomon, P.; Oliver, Richard (2009)
      Background: Stagonospora nodorum, a fungal ascomycete in the class dothideomycetes, is a damaging pathogen of wheat. It is a model for necrotrophic fungi that cause necrotic symptoms via the interaction of multiple effector ...
    • Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography . and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
      Bringans, S.; Hane, J.; Casey, T.; Tan, Kar-Chun; Lipscombe, R.; Solomon, P.; Oliver, Richard (2009)
      Background: Stagonospora nodorum, a fungal ascomycete in the class dothideomycetes, is a damaging pathogen of wheat. It is a model for necrotrophic fungi that cause necrotic symptoms via the interaction of multiple effector ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.