Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An incremental EM-based learning approach for on-line prediction of hospital resource utilization

    Access Status
    Fulltext not available
    Authors
    Ng, Shu
    Mclachlan, G.
    Lee, Andy
    Date
    2006
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ng, S. and Mclachlan, G. and Lee, A. 2006. An incremental EM-based learning approach for on-line prediction of hospital resource utilization. Artificial Intelligence in Medicine. 36 (3): pp. 257-267.
    Source Title
    Artificial Intelligence in Medicine
    DOI
    10.1016/j.artmed.2005.07.003
    ISSN
    09333657
    URI
    http://hdl.handle.net/20.500.11937/14954
    Collection
    • Curtin Research Publications
    Abstract

    Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995–1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n=692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD ≤ 1 day (Prop(MA≤1)). The significance of the comparison is assessed through a regression analysis.Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD=1.77days and Prop(MAD ≤ 1) =54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p - value=0.063) and a significant (p - value=0.044) increase of Prop(MAD≤1) with the incremental learning algorithm. Conclusion: The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS

    Related items

    Showing items related by title, author, creator and subject.

    • Relational evidence theory and spatial interpretation procedures.
      Pearce, Adrian (1996)
      Spatial interpretation involves the intelligent processing of images for learning, planning and visualisation. This involves building systems which learn to recognise patterns from the content of unconstrained data such ...
    • Innovative sparse representation algorithms for robust face recognition
      Qui, Huining; Pham, DucSon; Venkatesh, Svetha; Lai, J.; Liu, Wan-Quan (2011)
      In this paper, we propose two innovative and computationally efficient algorithms for robust face recognition, which extend the previous Sparse Representation-based Classification (SRC) algorithm proposed by Wright et al. ...
    • Mainstreaming Captions for Online Lectures in Higher Education in Australia
      Kent, Michael; Ellis, Katie; Peaty, Gwyneth; Latter, Natalie; Locke, Kathryn (2017)
      Captions can be defined as the text version of speech and other sound in traditional audio visual media such as films, television, DVDs and online videos. Captions are usually provided to enhance audio content and are ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.