An incremental EM-based learning approach for on-line prediction of hospital resource utilization
Access Status
Authors
Date
2006Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995–1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n=692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD ≤ 1 day (Prop(MA≤1)). The significance of the comparison is assessed through a regression analysis.Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD=1.77days and Prop(MAD ≤ 1) =54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p - value=0.063) and a significant (p - value=0.044) increase of Prop(MAD≤1) with the incremental learning algorithm. Conclusion: The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS
Related items
Showing items related by title, author, creator and subject.
-
Pearce, Adrian (1996)Spatial interpretation involves the intelligent processing of images for learning, planning and visualisation. This involves building systems which learn to recognise patterns from the content of unconstrained data such ...
-
Qui, Huining; Pham, DucSon; Venkatesh, Svetha; Lai, J.; Liu, Wan-Quan (2011)In this paper, we propose two innovative and computationally efficient algorithms for robust face recognition, which extend the previous Sparse Representation-based Classification (SRC) algorithm proposed by Wright et al. ...
-
Kent, Michael; Ellis, Katie; Peaty, Gwyneth; Latter, Natalie; Locke, Kathryn (2017)Captions can be defined as the text version of speech and other sound in traditional audio visual media such as films, television, DVDs and online videos. Captions are usually provided to enhance audio content and are ...