Show simple item record

dc.contributor.authorNg, Shu
dc.contributor.authorMclachlan, G.
dc.contributor.authorLee, Andy
dc.date.accessioned2017-01-30T11:46:59Z
dc.date.available2017-01-30T11:46:59Z
dc.date.created2014-10-28T02:31:43Z
dc.date.issued2006
dc.identifier.citationNg, S. and Mclachlan, G. and Lee, A. 2006. An incremental EM-based learning approach for on-line prediction of hospital resource utilization. Artificial Intelligence in Medicine. 36 (3): pp. 257-267.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/14954
dc.identifier.doi10.1016/j.artmed.2005.07.003
dc.description.abstract

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995–1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n=692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD ≤ 1 day (Prop(MA≤1)). The significance of the comparison is assessed through a regression analysis.Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD=1.77days and Prop(MAD ≤ 1) =54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p - value=0.063) and a significant (p - value=0.044) increase of Prop(MAD≤1) with the incremental learning algorithm. Conclusion: The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS

dc.publisherElsevier Science
dc.titleAn incremental EM-based learning approach for on-line prediction of hospital resource utilization
dc.typeJournal Article
dcterms.source.volume36
dcterms.source.number3
dcterms.source.startPage257
dcterms.source.endPage267
dcterms.source.issn09333657
dcterms.source.titleArtificial Intelligence in Medicine
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record