Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    Access Status
    Fulltext not available
    Authors
    Browne, P.
    Barret, M.
    O'Gara, Fergal
    Morrissey, J.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Source Title
    BMC Microbiology
    DOI
    10.1186/1471-2180-10-300
    Additional URLs
    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003667/
    ISSN
    1471-2180
    URI
    http://hdl.handle.net/20.500.11937/15034
    Collection
    • Curtin Research Publications
    Abstract

    Background: Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results: In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits.Conclusions: Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.

    Related items

    Showing items related by title, author, creator and subject.

    • Molecular mechanism underlying aberrant expression of the connective tissue growth factor in paediatric pre-B cell acute lymphoblastic leukemia
      Welch, Mathew D. (2011)
      Acute lymphoblastic leukaemia (ALL) is the most common cancer diagnosed in children aged 1-14 years. There have been vast improvements in clinical outcomes for children diagnosed with ALL with cure rates of up to 90% ...
    • Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1a degradation
      Legendre, C.; Reen, F.; Mooij, M.; McGlacken, G.; Adams, C.; O'Gara, Fergal (2012)
      The transcription factor hypoxia-inducible factor 1 (HIF-1) has recently emerged to be a crucial regulator of the immune response following pathogen perception, including the response to the important human pathogen ...
    • A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa.
      Reen, F; Haynes, J; Mooij, M; O'Gara, Fergal (2013)
      LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.