Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semi-arid climate?
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in The Journal of Cleaner Production. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in The Journal of Cleaner Production, Vol. 83 (2014). DOI: 10.1016/j.jclepro.2014.07.020
Collection
Abstract
Agriculture production contributes to global warming directly via the release of carbon dioxide (CO2), methane and nitrous oxide emissions, and indirectly through the consumption of inputs such as fertilizer, fuel and herbicides. We investigated if including a grain legume (Lupinus angustifolius) in a cropping rotation, and/or applying agricultural lime to increase the pH of an acidic soil, decreased greenhouse gas (GHG) emissions from wheat production in a semi-arid environment by conducting a streamlined life cycle assessment analysis that utilized in situ GHG emission measurements, rather than international default values. We also assessed the economic viability of each GHG mitigation strategy. Incorporating a grain legume in a two year cropping rotation decreased GHG emissions from wheat production by 56% on a per hectare basis, and 35% on a per tonne of wheat basis, primarily by lowering nitrogen fertilizer inputs. However, a large incentive ($93 per tonne of carbon dioxide equivalents reduced) was required for the inclusion of grain legumes to be financially attractive. Applying lime was profitable but increased GHG emissions by varying amounts depending upon whether the lime was assumed to dissolve over one, five or 10 years. We recommend further investigating the impact of liming on both CO2 and non-CO2 emissions to accurately account for its effect on GHG emissions from agricultural production.
Related items
Showing items related by title, author, creator and subject.
-
Pritchard, Deborah; Collins, David; Allen, D.; Penney, N. (2008)Increased nutrient levels in inland waterways have led to algal blooms and eutrophication in many agricultural regions. To ensure fertiliser inputs are managed more effectively, the source of contamination needs to be ...
-
McLaughlin, M.; Bell, M.; Nash, D.; Pritchard, Deborah; Whatmuff, M.; Warne, M.; Heemsbergen, D.; Broos, K; Barry, G.; Penney, N. (2008)Increased nutrient levels in inland waterways have led to algal blooms and eutrophication in many agricultural regions. To ensure fertiliser inputs are managed more effectively, the source of contamination needs to be ...
-
Biswas, Wahidul; Barton, L.; Carter, D. (2008)This study presents a greenhouse gases (GHG) life cycle assessment of one tonne of wheat transported to port in south-western Australia; including emissions from pre-farm, on-farm and post-farm stages. The pre-farm stage ...