Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Fungicide resistance management in practice; mixtures, alternations and cross resistance patterns

    247640_247640.pdf (74.44Kb)
    Access Status
    Open access
    Authors
    Oliver, Richard
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Oliver, R. 2016. Fungicide resistance management in practice; mixtures, alternations and cross resistance patterns. Journal of Plant Pathology. 98 (4).
    Source Title
    Journal of Plant Pathology
    DOI
    10.4454/jpp.v98i4sup.3775
    ISSN
    1125-4653
    School
    Centre for Crop Disease Management
    URI
    http://hdl.handle.net/20.500.11937/15549
    Collection
    • Curtin Research Publications
    Abstract

    Evolved resistance to fungicides is a critical issue for global food security. Resistance has emerged rapidly in some cases, and some so it is vital that the effective life of actives is prolonged as much as practicable. Recent theoretical models to account at least qualitatively for resistance evolution are backed up by extensive experimental data (reviewed in van den Bosch et al. 2014, Ann Rev Phytopath 52 175-195). The models revolve around the resistance factor associated with the resistance mutation and the fitness cost incurred in the absence of the fungicide. The challenge now is to combine these models with practical realities. The models suggest three general tactics to prolong the useful life of a threatened fungicide;-1-reduce the amount of fungal inoculum;-2-reduce to a minimum the time the fungicide is in contact with the fungus consistent with disease control;-3-use other fungicides in mixtures or alternations with the threatened fungicide. The third tactic (mixtures and alternations) is believed to be effective if either neutral or negative cross resistance operates. Neutral cross resistance applies when there is no correlation between EC50s of strains to the first and second fungicides; negative cross resistance applies if there is a negative correlation between the EC50s. Mixtures and alternations would not be effective if positive cross resistance applied. Mixtures and alternations can theoretically apply on timescales from zero to years and on areas from one field to entire countries and continents. Mixtures are alternations with zero time and single field area scales. Various models can be used to design the optimum resistance management mixture or alternation tactics and these will vary depending on the nature of the cross resistance found in the relevant pathogen populations and many other factors. Furthermore, like tactics 1 and 2 (minimum inoculum and minimum dose) the tactics recommended must still deliver adequate disease control and must be acceptable to farmers, regulators and the crop protection industry. Negative cross resistance presents the attractive scenario of using solo products on large areas for long periods until the resistant population has built up to a large enough level to warrant switching en masse to the second fungicide. The new fungicide is then used until resistance develops and the first fungicide is used again; the Merry Dance. This scenario has severe sociological and regulatory hurdles but may apply advantageously under certain circumstances. In many regions, the pathogen population has already developed resistance to different fungicides with a complex pattern of positive, zero and negative cross resistance. In these cases I will argue that prolongations of effective fungicide life can still be achieved by tactical use of fungicides to pull fungal populations into evolutionary dead ends. To maximise these possibilities, fungicides with enhanced negative cross resistance should be developed and encouraged by regulatory authorities.

    Related items

    Showing items related by title, author, creator and subject.

    • Using epidemiological principles to explain fungicide resistance management tactics: Why do mixtures outperform alternations?
      Elderfield, J.; Lopez-Ruiz, Fran; Van Den Bosch, F.; Cunniffe, N. (2018)
      Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and ...
    • Mixtures as a fungicide resistance management tactic
      Van Den Bosch, F.; Paveley, N.; Van Den Berg, F.; Hobbelen, P.; Oliver, Richard (2014)
      We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a ...
    • The usefulness of fungicide mixtures and alternation for delaying the selection for resistance in populations of mycosphaerella graminicola on winter wheat: A modeling analysis
      Hobbelen, P.; Paveley, N.; Oliver, Richard; van den Bosch, F. (2013)
      A fungicide resistance model (reported and tested previously) was amended to describe the development of resistance in Mycosphaerella graminicola populations in winter wheat (Triticum aestivum) crops in two sets of fields, ...
    Advanced search
    Browse
    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type
    My Account
    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.