Show simple item record

dc.contributor.authorLu, Zudi
dc.contributor.authorTjostheim, D.
dc.contributor.authorYAO, Q.
dc.date.accessioned2017-01-30T11:51:57Z
dc.date.available2017-01-30T11:51:57Z
dc.date.created2015-09-29T01:51:51Z
dc.date.issued2007
dc.identifier.citationLu, Z. and Tjostheim, D. and YAO, Q. 2007. ADAPTIVE VARYING-COEFFICIENT LINEAR MODELS FOR STOCHASTIC PROCESSES: ASYMPTOTIC THEORY. Statistica Sinica. 17: pp. 177-197.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/15799
dc.description.abstract

We establish the asymptotic theory for the estimation of adaptive varying coefficient linear models. More specifically, we show that the estimator of the index parameter is root-n-consistent. It differs from the locally optimal estimator that has been proposed in the literature with a prerequisite that the estimator is within a n^{-delta} distance of the true value. To this end, we establish two fundamental lemmas for the asymptotic properties of the estimators of parametric components in a general semiparametric setting. Furthermore, the estimation for the coefficient functions is asymptotically adaptive to the unknown index parameter. Asymptotic properties are derived using the empirical process theory for strictly stationary beta-mixing processes.

dc.publisherInternational Chinese Statistical Association
dc.relation.urihttp://www3.stat.sinica.edu.tw/statistica/
dc.subjectuniform convergence
dc.subjectempirical process
dc.subjectroot-n consistency
dc.subject- beta-mixing
dc.subjectAdaptive varying-coefficient model
dc.subjectasymptotic normality
dc.subjectindex parameter
dc.titleADAPTIVE VARYING-COEFFICIENT LINEAR MODELS FOR STOCHASTIC PROCESSES: ASYMPTOTIC THEORY
dc.typeJournal Article
dcterms.source.volume17
dcterms.source.startPage177
dcterms.source.endPage197
dcterms.source.issn10170405
dcterms.source.titleStatistica Sinica
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record