Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Parameter estimation of smooth threshold autoregressive models.

    10781_Nur D 1998.pdf (3.204Mb)
    Access Status
    Open access
    Authors
    Nur, Darfiana
    Date
    1998
    Supervisor
    Dr Nihal D. Yatawara
    Dr M. Gopalan Nair
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/1834
    Collection
    • Curtin Theses
    Abstract

    This thesis is mainly concerned with the estimation of parameters of a first-order Smooth Threshold Autoregressive (STAR) model with delay parameter one. The estimation procedures include classical and Bayesian methods from a parametric and a semiparametric point of view.As the theoretical importance of stationarity is a primary concern in estimation of time series models, we begin the thesis with a thorough investigation of necessary or sufficient conditions for ergodicity of a first-order STAR process followed by the necessary and sufficient conditions for recurrence and classification for null-recurrence and transience.The estimation procedure is started by using Bayesian analysis which derives posterior distributions of parameters with a noninformative prior for the STAR models of order p. The predictive performance of the STAR models using the exact one-step-ahead predictions along with an approximation to multi-step-ahead predictive density are considered. The theoretical results are then illustrated by simulated data sets and the well- known Canadian lynx data set.The parameter estimation obtained by conditional least squares, maximum likelihood, M-estimator and estimating functions are reviewed together with their asymptotic properties and presented under the classical and parametric approaches. These estimators are then used as preliminary estimators for obtaining adaptive estimates in a semiparametric setting. The adaptive estimates for a first-order STAR model with delay parameter one exist only for the class of symmetric error densities. At the end, the numerical results are presented to compare the parametric and semiparametric estimates of this model.

    Related items

    Showing items related by title, author, creator and subject.

    • Bayesian estimation and model selection of a multivariate smooth transition autoregressive model
      Livingston, G.; Nur, Darfiana (2019)
      The multivariate smooth transition autoregressive model with order k (M-STAR)(k) is a nonlinear multivariate time series model able to capture regime changes in the conditional mean. The main aim of this paper is to develop ...
    • Re-Parameterization of multi-regime STAR-GARCH model
      Chan, Felix ; Theoharakis, B. (2009)
      © MODSIM 2009.All rights reserved. It is well known in the literature that the joint parameter estimation of the Smooth Autoregressive - Generalized Autoregressive Conditional Heteroskedasticity (STAR-GARCH) models poses ...
    • Bayesian inference of smooth transition autoregressive (STAR)(k)–GARCH(l, m) models
      Livingston, G.; Nur, Darfiana (2018)
      © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. The smooth transition autoregressive (STAR)(k)–GARCH(l, m) model is a non-linear time series model that is able to account for changes in both regime and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.