Show simple item record

dc.contributor.authorLi, X.
dc.contributor.authorZhang, J.
dc.contributor.authorWu, Yong Hong
dc.date.accessioned2017-01-30T11:54:10Z
dc.date.available2017-01-30T11:54:10Z
dc.date.created2014-05-21T20:00:37Z
dc.date.issued2014
dc.identifier.citationLi, X. and Zhang, J. and Wu, Y.H. 2014. Instability of Standing Wave for the Klein–Gordon–Hartree Equation. Acta Mathematica Sinica, English Series. 30 (5): pp. 861-871.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/16146
dc.identifier.doi10.1007/s10114-014-2399-x
dc.description.abstract

The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation ∂ 2 u ∂t 2 −Δu+u− (|x| −γ *|u| 2 )u = 0, x ∈R N , 0<γ<min{N,4} is investigated. For the case N ≥ 3 and ω 2 <2 N+4−γ, it is shown that the standing wave eiωt φ(X) is strongly unstable by blow-up in finite time.

dc.publisherSpringer
dc.subject35A15
dc.subjectstanding waves
dc.subject35L70
dc.subject35B35
dc.subjectstrong instability
dc.subjectKlein-Gordon-Hartree equation
dc.titleInstability of Standing Wave for the Klein–Gordon–Hartree Equation
dc.typeJournal Article
dcterms.source.volume30
dcterms.source.number5
dcterms.source.startPage861
dcterms.source.endPage871
dcterms.source.issn1439-8516
dcterms.source.titleActa Mathematica Sinica, English Series
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record