Instability of Standing Wave for the Klein–Gordon–Hartree Equation
dc.contributor.author | Li, X. | |
dc.contributor.author | Zhang, J. | |
dc.contributor.author | Wu, Yong Hong | |
dc.date.accessioned | 2017-01-30T11:54:10Z | |
dc.date.available | 2017-01-30T11:54:10Z | |
dc.date.created | 2014-05-21T20:00:37Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Li, X. and Zhang, J. and Wu, Y.H. 2014. Instability of Standing Wave for the Klein–Gordon–Hartree Equation. Acta Mathematica Sinica, English Series. 30 (5): pp. 861-871. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/16146 | |
dc.identifier.doi | 10.1007/s10114-014-2399-x | |
dc.description.abstract |
The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation ∂ 2 u ∂t 2 −Δu+u− (|x| −γ *|u| 2 )u = 0, x ∈R N , 0<γ<min{N,4} is investigated. For the case N ≥ 3 and ω 2 <2 N+4−γ, it is shown that the standing wave eiωt φ(X) is strongly unstable by blow-up in finite time. | |
dc.publisher | Springer | |
dc.subject | 35A15 | |
dc.subject | standing waves | |
dc.subject | 35L70 | |
dc.subject | 35B35 | |
dc.subject | strong instability | |
dc.subject | Klein-Gordon-Hartree equation | |
dc.title | Instability of Standing Wave for the Klein–Gordon–Hartree Equation | |
dc.type | Journal Article | |
dcterms.source.volume | 30 | |
dcterms.source.number | 5 | |
dcterms.source.startPage | 861 | |
dcterms.source.endPage | 871 | |
dcterms.source.issn | 1439-8516 | |
dcterms.source.title | Acta Mathematica Sinica, English Series | |
curtin.department | ||
curtin.accessStatus | Fulltext not available |