Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation

    Access Status
    Fulltext not available
    Authors
    Indrawirawan, S.
    Sun, Hongqi
    Duan, X.
    Wang, Shaobin
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Indrawirawan, S. and Sun, H. and Duan, X. and Wang, S. 2015. Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation. Applied Catalysis B: Environmental. 179: pp. 352-362.
    Source Title
    Applied Catalysis B: Environmental
    ISSN
    0926-3373
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/16348
    Collection
    • Curtin Research Publications
    Abstract

    Metal-free nanocarbon materials in different structural dimensions, such as 0D fullerene (C60), 1D single-walled carbon nanotubes (SWCNTs), 2D graphene nanoplate (GNP), 3D hexagonally-ordered mesoporous carbon (CMK-3) and cubically-ordered mesoporous carbon (CMK-8) were investigated for adsorption and catalytic oxidation of phenol in water solutions. A variety of characterisation techniques were used to investigate the properties of the carbon samples. It was found that structural dimension and heat treatment would significantly affect the performance of the nanocarbons in adsorption and catalysis. Both GNP and CMK-3 showed better phenol adsorption with around 40% phenol removal in 500 mLof 20 ppm solutions. The nanocarbons were also used for metal-free activation of peroxymonosulfate(PMS) to produce sulfate radicals for catalytic phenol oxidation. Efficient catalysis was observed on CMK-3, CMK-8 and SWCNTs. Thermal treatment of the nanocarbons at 350?C in nitrogen was conducted to modulate the crystal and micro-structures and surface functional groups of the different nanocarbons. Enhancements at 2-fold in adsorption on SWCNTs and 7.5-fold in catalysis on CMK-8 were observed after the heat treatments. Mechanisms of adsorption and catalytic oxidation of phenol were discussed. This study contributes to the development of green materials for sustainable remediation of aqueous organic pollutants.

    Related items

    Showing items related by title, author, creator and subject.

    • Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons
      Duan, X.; Sun, Hongqi; Kang, J.; Wang, Yuxian; Indrawirawan, S.; Wang, Shaobin (2015)
      A variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates. ...
    • Metal-Free Carbocatalysis in Advanced Oxidation Reactions
      Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)
      Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...
    • Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes
      Duan, X.; Sun, Hongqi; Tade, Moses; Wang, S. (2016)
      Carbon materials have been demonstrated as effective and metal-free carbocatalysts for substituting the toxic and/or expensive transition and noble metals/oxides for various green chemical processes. In this study, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.