Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Metal-Free Carbocatalysis in Advanced Oxidation Reactions

    Access Status
    Fulltext not available
    Authors
    Duan, Xiaoguang
    Sun, Hongqi
    Wang, Shaobin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Duan, X. and Sun, H. and Wang, S. 2018. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Accounts of Chemical Research. 51 (3): pp. 678-687.
    Source Title
    Accounts of Chemical Research
    DOI
    10.1021/acs.accounts.7b00535
    ISSN
    0001-4842
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/67574
    Collection
    • Curtin Research Publications
    Abstract

    Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications. The journey starts with the discovery of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by graphene-based materials. With the systematic investigations on most carbon allotropes, for the first time the carbocatalysis for PMS or PDS activation was correlated with the pristine carbon configuration, oxygen functionality (ketonic groups), defect degree (exposed edge sites and vacancies), and dimensional structure. Moreover, an intrinsic difference in catalytic oxidation does exist between PMS and PDS activation. For example, the PMS/carbon reaction is dominated by free radicals, while PDS/carbon catalysis was unveiled as a singlet oxygen- or nonradical-based process in which the surface-activated PDS complex directly degrades the organic pollutants without relying on the generation of free radicals. Nitrogen doping significantly enhances the carbocatalysis because of the positively charged carbon domains, which strongly bind with persulfates to form reactive intermediates toward organic reactions. More importantly, N doping substantially alters the catalytic oxidation from a radical process to a nonradical pathway in PMS activation. Codoping of sulfur or boron with nitrogen at a rational level will synergistically promote the catalysis as a result of the formation of more catalytic centers by improved charge/spin redistribution of the carbon framework. Furthermore, a structure-performance relationship was established for annealed nanodiamonds with a characteristic sp 3 /sp 2 (core/shell) hybridization, where the catalytic pathways were intimately dependent on the thickness of the graphitic shells. Interestingly, the introduction of structural defects and N dopants into the well-defined graphitic carbon framework and alteration of graphene/diamond hybrids can transform the persulfate/carbon system from a radical oxidation pathway to a nonradical pathway. Encapsulation of metal nanoparticles within carbon layers further modulates the electronic states of the interacting carbon via charge transport to increase the electron density. Overall, this Account contributes to unveiling the mist of carbocatalysis in AOPs and to summarizing the achievements of metal-free remediation. We also present future research directions on underpinning the knowledge base to facilitate the applications of nanocarbons in sustainable catalysis and environmental chemistry.

    Related items

    Showing items related by title, author, creator and subject.

    • N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
      Duan, X.; Sun, Hongqi; Wang, Yuxian; Kang, J.; Wang, Shaobin (2015)
      Metal-free materials have been demonstrated to be promising alternatives to conventional metal-based catalysts. Catalysis on nanocarbons comparable to that of cobalt- or manganese-based catalysts in peroxymonosulfate (PMS) ...
    • One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes
      Wang, C.; Kang, J.; Sun, Hongqi; Ang, Ming; Tadé, Moses; Wang, Shaobin (2016)
      Recently, graphene and its derivatives as novel metal-free materials have attracted considerable attention in environmental remediation technologies. One of the barriers to practical applications is the mass production ...
    • Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes
      Duan, X.; Indrawirawan, S.; Kang, J.; Tian, Wenjie; Zhang, H.; Sun, H.; Wang, Shaobin (2018)
      © 2018 Elsevier B.V. Rational regulation of redox capacity in advanced oxidation processes (AOPs) by metal-free nanomaterials is appealing to extend the state-of-the-art carbocatalysis toward diverse applications. In this ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.