Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modeling of a liquid epoxy molding process using a particle swarm optimization based fuzzy regression approach

    Access Status
    Fulltext not available
    Authors
    Chan, Kit Yan
    Dillon, Tharam
    Kwong, C.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chan, K.Y. and Dillon, T.S. and Kwong, C.K. 2011. Modeling of a liquid epoxy molding process using a particle swarm optimization based fuzzy regression approach. IEEE Transactions on Industrial Informatics. 7 (1): pp. 148-158.
    Source Title
    IEEE Transactions on Industrial Informatics
    DOI
    10.1109/TII.2010.2100130
    ISSN
    15513203
    School
    Digital Ecosystems and Business Intelligence Institute (DEBII)
    URI
    http://hdl.handle.net/20.500.11937/16533
    Collection
    • Curtin Research Publications
    Abstract

    Modeling of manufacturing processes is important because it enables manufacturers to understand the process behavior and determine the optimum operating conditions of the process for a high yield, low cost and robust operation. However, existing techniques in modeling manufacturing processes cannot address the whole common issues in developing models for manufacturing processes: a) manufacturing processes are usually nonlinear in nature; b) a small amount of experimental data is only available for developing manufacturing process models; c) outliers often exist in experimental data; d) explicit models in a polynomial form are often prefered by manufacturing process engineers; e) models with satisfactory prediction accuracy are required. In this paper, a modeling algorithm, namely the particle swarm optimization based fuzzy regression (PSO-FR) approach, is proposed to generate fuzzy nonlinear regression models, which seek to address all of the common issues in developing models for manufacturing processes. The PSO-FR first employs the operations of particle swarm optimization to generate the structures of the process models in nonlinear polynomial form, and then it employs a fuzzy coefficient generator to identify outliers in the original experimental data. Fuzzy coefficients of the process models are determined by the fuzzy coefficient generator in which theexperimental data excluding the outliers is used. The effectiveness of the PSO-FR approach is evaluated by modeling the manufacturing process liquid epoxy molding process which is a commonly used technology for microchip encapsulation in electronic packaging.Results were compared with those based on the commonly used modeling methods. It was found that PSO-FR can achieve better goodness-of-fitness than other methods. Also the prediction accuracy of the model developed based on the PSO-FR is better than the other methods.

    Related items

    Showing items related by title, author, creator and subject.

    • Handling uncertainties in modelling manufacturing processes with hybrid swarm intelligence
      Chan, Kit Yan; Dillon, Tharam; Kwong, Che (2011)
      Seldom has research regarding manufacturing process modelling considered the two common types ofuncertainties which are caused by randomness as in material properties and by fuzziness as in the inexact knowledge in ...
    • Manufacturing modeling using an evolutionary fuzzy regression
      Chan, Kit Yan; Ling, S.; Dillon, Tharam; Kwong, C. (2011)
      Fuzzy regression is a commonly used approach for modeling manufacturing processes in which the availability of experimental data is limited. Fuzzy regression can address fuzzy nature of experimental data in which fuzziness ...
    • Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers
      Chan, Kit Yan; Kwong, C.; Fogarty, T. (2009)
      Fuzzy regression (FR) been demonstrated as a promising technique for modeling manufacturing processes where availability of data is limited. FR can only yield linear type FR models which have a higher degree of fuzziness, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.