Handling uncertainties in modelling manufacturing processes with hybrid swarm intelligence
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is an Author's Accepted Manuscript of an article published in the International Journal of Production Research (copyright Taylor & Francis), available online at <a href="http://www.tandfonline.com/">http://www.tandfonline.com/</a>.
Collection
Abstract
Seldom has research regarding manufacturing process modelling considered the two common types ofuncertainties which are caused by randomness as in material properties and by fuzziness as in the inexact knowledge in manufacturing processes. Accuracies of process models can be downgraded if these uncertainties are ignored in the development of process models. In this paper, a hybrid swarm intelligence algorithm for developing process models which intends to achieve significant accuracies for manufacturing process modelling by addressing these two uncertainties is proposed. The hybrid swarm intelligence algorithm first applies the mechanism of particle swarm optimisation to generate structures of process models in polynomial forms, and then it applies the mechanism of fuzzy least square regression algorithm to determine fuzzy coefficients on polynomials so as to address the two uncertainties, fuzziness and randomness. Apart from addressing the two uncertainties, the common feature in manufacturing processes, nonlinearities between process parameters, which are not inevitable in manufacturing processes, can also be addressed. The effectiveness of the hybrid swarm algorithm is demonstrated by modelling of the solder paste dispensing process.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Kit Yan; Dillon, Tharam; Kwong, C. (2011)Modeling of manufacturing processes is important because it enables manufacturers to understand the process behavior and determine the optimum operating conditions of the process for a high yield, low cost and robust ...
-
Chan, Kit Yan; Kwong, C. (2012)In the semiconductor manufacturing industry, epoxy dispensing is a popular process commonly used in die bonding as well as in microchip encapsulation for electronic packaging. Modeling the epoxy dispensing process is ...
-
Chan, Kit Yan; Ling, S.; Dillon, Tharam; Kwong, C. (2011)Fuzzy regression is a commonly used approach for modeling manufacturing processes in which the availability of experimental data is limited. Fuzzy regression can address fuzzy nature of experimental data in which fuzziness ...