Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band

    Access Status
    Fulltext not available
    Authors
    Dubiusson, P.
    Frouin, R.
    Dessailly, D.
    Duforet, L.
    Leon, J.
    Voss, K.
    Antoine, David
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dubiusson, P. and Frouin, R. and Dessailly, D. and Duforet, L. and Leon, J. and Voss, K. and Antoine, D. 2009. Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band. Remote Sensing of Environment. 113: pp. 1899-1911.
    Source Title
    Remote Sensing of Environment
    DOI
    10.1016/j.rse.2009.04.018
    ISSN
    00344257
    URI
    http://hdl.handle.net/20.500.11937/16588
    Collection
    • Curtin Research Publications
    Abstract

    A methodology is proposed to infer the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 absorption A-band (759 to 770 nm). The reflectance ratio is defined as the ratio of the reflectance in a first spectral band, strongly attenuated by O2 absorption, and the reflectance in a second spectral band, minimally attenuated. For a given surface reflectance, simple relations are established between the reflectance ratio and the altitude of an aerosol layer, as a function of atmospheric conditions and the geometry of observation. The expected accuracy for various aerosol loadings and models is first quantified using an accurate, high spectral resolution, radiative transfer model that fully accounts for interactions between scattering and absorption. The method is developed for POLDER and MERIS, satellite sensors with adequate spectral characteristics. The simulations show that the method is only accurate over dark surfaces when aerosol optical thickness at 765 nm is relatively large (N0.3). In this case, the expected accuracy is on the order of ±0.5 km or ±0.2 km for POLDER or MERIS respectively. More accurate estimates are obtained with MERIS, since in this case the spectral reflectance ratio is more sensitive to aerosol altitude. However, a precise spectral calibration is needed for MERIS. The methodology is applied to MERIS and POLDER imagery acquired over marine surfaces. The estimated aerosol altitude is compared with in situ lidar profiles of backscattering coefficient measured during the AOPEX-2004 experiment for MERIS, or obtained with the space-borne lidar CALIOP for POLDER. The retrieved altitudes agree with lidar measurements in a manner consistent with theory. These comparisons demonstrate the potential of the differential absorption methodology for obtaining information on aerosol altitude over dark surfaces.

    Related items

    Showing items related by title, author, creator and subject.

    • Estimation of aerosol altitude from reflectance ratio measurements in the O2 A-band
      Dubuisson, P.; Frouin, R.; Duforêt, L.; Dessailly, D.; Voss, K.; Antoine, David (2006)
      A methodology is presented to estimate aerosol altitude from reflectance ratio measurements in the O2 absorption Aband. Previous studies have shown the impact of the vertical distribution of scatterers on the reflectance ...
    • Atmospheric water vapour determination from remotely sensed hyperspectral data.
      Rodger, Andrew P. (2002)
      The accurate estimation of atmospheric water vapour and the subsequent derivation of surface spectral reflectance from hyperspectral VNIR-SWIR remotely sensed data is important for many applications. A number of algorithms ...
    • Intercomparison of desert dust optical depth from satellite measurements
      Carboni, E.; Thomas, G.; Sayer, A.; Siddans, R.; Poulsen, C.; Grainger, R.; Ahn, C.; Antoine, David; Bevan, S.; Braak, R.; Brindley, H.; DeSouza-Machado, S.; Deuzé, J.; Diner, D.; Ducos, F.; Grey, W.; Hsu, C.; Kalashnikova, O.; Kahn, R.; North, P.; Salustro, C.; Smith, A.; Tanré, D.; Tanré, D.; Torres, O.; Veihelmann, B. (2012)
      This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.