Surface-bound molecular rulers for probing the electrical double layer
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Herein, we report the first experimental investigation on the effect of varying the position of redox-active moieties, within the electrical double layer, on the apparent formal potential and on the electron transfer rate constant. This was achieved using a rigid class of molecules, norbornylogous bridges, to place redox species (ferrocene) at a fixed position above the surface of the electrode. Cyclic voltammetry and alternating current voltammetry were used to calculate the apparent formal potential and the electron transfer rate constant for the electron transfer between the ferrocene and the gold electrode. We use the effect of electric field on the apparent formal potential measurement of the surface-bound redox species to calculate the potential drop from the initiation of the electrical double layer to different distances above it. It was found that self-assembled monolayers formed from ?- hydroxyalkanethiol have a potential profile very similar to that described by classical theories for bare metal electrodes. A steep drop in potential in the Stern layer was observed followed by a smaller potential drop in the Gouy-Chapman layer. The electron transfer rate constant was found to decrease as the distance between the ferrocene moiety and the initiation of the double layer is increased. Thus, the electron transfer rate constant appears to be dependent on ion concentration.
Related items
Showing items related by title, author, creator and subject.
-
Veder, Jean-Pierre M. (2010)This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
-
Darwish, Nadim; Paddon-Row, M.; Gooding, J. (2014)Electron transfer (ET) reactions through molecules attached to surfaces, whether they are through single molecules or ensembles, are the subject of much research in molecular electronics, bioelectronics, and electrochemistry. ...
-
Li, Tiexin; Peiris, Chandramalika ; Dief, Essam; MacGregor, M.; Ciampi, Simone ; Darwish, Nadim (2022)Electric fields can induce bond breaking and bond forming, catalyze chemical reactions on surfaces, and change the structure of self-assembled monolayers on electrode surfaces. Here, we study the effect of electric fields ...