Waves in the sky: Probing the ionosphere with the Murchison Widefield Array
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2015 International Union of Radio Science (URSI). Low-frequency, wide-field radio telescopes such as the Murchison Widefield Array (MWA) enable the dense spatial sampling of the ionosphere and plasmasphere on regional scales. For a physically compact array such as the MWA, the refractive shifts in the positions of celestial sources in the synthesised radio images are proportional to spatial gradients in the total electron content (TEC) transverse to the line of sight. By measuring the angular position shifts of celestial radio sources, one can probe waves and disturbances in the intervening plasma. Radio telescopes differ fundamentally from other techniques for measuring plasma fluctuations in that they are sensitive to TEC gradients/differences rather than absolute TEC. This makes them sensitive specifically to fluctuations about the ambient density, and therefore powerful probes of plasma density waves and irregularities.
Related items
Showing items related by title, author, creator and subject.
-
Banfield, J.; Wong, O.; Willett, K.; Norris, R.; Rudnick, L.; Shabala, S.; Simmons, B.; Snyder, C.; Garon, A.; Seymour, Nick; Middelberg, E.; Andernach, H.; Lintott, C.; Jacob, K.; Kapinska, A.; Mao, M.; Masters, K.; Jarvis, M.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.; Bamford, S.; Burchell, T.; Chow, K.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T.; Kaviraj, S.; López-Sánchez, R.; Maksym, W.; Polsterer, K.; Borden, K.; Hollow, R.; Whyte, L. (2015)We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the ...
-
Mignano, A.; Prandoni, I.; Gregorini, L.; Parma, P.; De Ruiter, H.; Wieringa, M.; Vettolani, G.; Ekers, Ronald (2008)Context. One of the most debated issues about sub-mJy radio sources, which are responsible for the steepening of the 1.4 GHz source counts, is the origin of their radio emission. Particularly interesting, from, this point ...
-
Bonafede, A.; Intema, Hubertus; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; De Gasperin, F.; Röttgering, H.; Van Weeren, R.; Cassano, R. (2015)Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters ...