Radio haloes in Sunyaev-Zel'dovich-selected clusters of galaxies: The making of a halo?
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters have been used in the past to search for radio haloes and to understand their connection with cluster-cluster mergers and with the thermal component of the intracluster medium. More recently, the Sunyaev-Zel'dovich effect has been proven to be a better route to search for massive clusters in a wider redshift range. With the aim of discovering new radio haloes and understanding their connection with cluster-cluster mergers, we have selected themostmassive clusters from the Planck early source catalogue and we have observed with the Giant Metrewave Radio Telescope at 323 MHz those objects for which deep observations were not available. We have discovered new peculiar radio emission in three of the observed clusters, finding (i) a radio halo in the cluster RXCJ0949.8+1708, (ii) extended emission in Abell 1443 that we classify as a radio halo plus a radio relic, with a bright filament embedded in the radio halo, and (iii) low-power radio emission in CIZA J1938.3+5409 that is ten times below the radio-X-ray correlation and represents the first direct detection of the radio emission in the 'upper-limit' region of the radio-X-ray diagram. We discuss the properties of these new radio haloes in the framework of theoretical models for the radio emission.
Related items
Showing items related by title, author, creator and subject.
-
Savini, F.; Bonafede, A.; Brüggen, M.; Rafferty, D.; Shimwell, T.; Botteon, A.; Brunetti, G.; Intema, Huib ; Wilber, A.; Cassano, R.; Vazza, F.; Van Weeren, R.; Cuciti, V.; De Gasperin, F.; Röttgering, H.; Sommer, M.; Bîrzan, L.; Drabent, A. (2019)Centrally located diffuse radio emission has been observed in both merging and non-merging galaxy clusters. Depending on their morphology and size, we distinguish between giant radio haloes, which occur predominantly in ...
-
Van Weeren, R.; Intema, Hubertus; Lal, D.; Andrade-Santos, F.; Brüggen, M.; De Gasperin, F.; Forman, W.; Hoeft, M.; Jones, C.; Nuza, S.; Röttgering, H.; Stroe, A. (2014)We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least ...
-
Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R.; Rafferty, D.; Mechev, A.; Intema, Hubertus; Andrade-Santos, F.; Clarke, A.; Mahony, E.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M. (2018)Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ~650 kpc near the cluster centre ...