Optimal design of all-pass variable fractional-delay digital filters
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
Copyright © 2008 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Collection
Abstract
This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods.
Related items
Showing items related by title, author, creator and subject.
-
Yu, Changjun (2012)In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
-
Dam, Hai Huyen Heidi (2014)This letter develops an efficient computational procedure for the design of an odd-order variable fractional delay (VFD) digital filter with minimum peak variable fractional delay error subject to restrictions on the peak ...
-
Dam, Hai Huyen (2011)This correspondence investigates the least squares and minimax design problems for allpass variable fractional delay (VFD) filters. A two stage optimization approach is proposed to solve the resulting minimax optimization ...