Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation

    Access Status
    Fulltext not available
    Authors
    Yang, G.
    Su, Chao
    Wang, W.
    Ran, R.
    Tade, Moses
    Shao, Zongping
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yang, G. and Su, C. and Wang, W. and Ran, R. and Tade, M. and Shao, Z. 2014. Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. Journal of Power Sources. 264: pp. 220-228.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2014.04.091
    ISSN
    0378-7753
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/18552
    Collection
    • Curtin Research Publications
    Abstract

    Practical applications of single-chamber solid oxide fuel cells (SC-SOFCs) are partially limited by the difficulties and complications associated with the initialization process, which mainly involves the reduction of NiO to Ni in the anode. Here we propose a facile approach to the in situ activation (initialization) of SC-SOFCs with a state-of-the-art sintered nickel-based anode using a methane–oxygen gas mixture, combined with the introduction of nanocatalysts into the anode. RuO2, CeO2 or Co3O4 with the high activity for methane oxidation are investigated for above purpose. XRD results demonstrate that the nanocatalysts are successfully introduced into the anode via a simple solution impregnation technique. Using FESEM, different nanoparticle morphologies are observed for the three catalysts. The time dependence of the cell voltage operating on the methane–oxygen gas mixture demonstrates successful activation following nanocatalyst introduction. Single cells with different nanocatalyst-modified anodes, initialized by in situ reduction, deliver high open circuit voltages of approximately 1.0 V and significant peak power outputs of approximately 1000 mW cm-2 at a furnace temperature of 650 °C. XRD and FESEM analysis indicates that only the CeO2 retains a same structure and morphology after the test. It suggests that the CeO2 nanocatalyst is the most promising for practical applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Electro-oxidation competency of palladium nanocatalysts over ceria-carbon composite supports during alkaline ethylene glycol oxidation
      Sankar, S.; Watanabe, N.; Anilkumar, G.; Nair, Balagopal; Sivakamiammal, S.; Tamaki, T.; Yamaguchi, T. (2019)
      Direct alcohol fuel cells (DAFCs) are widely regarded as one of the most promising among the futuristic and capable energy systems; direct liquid fuel cells (DLFCs). In this article, we discuss in detail the competency ...
    • Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas
      Wang, F.; Wang, Wei; Ran, R.; Tade, Moses; Shao, Zongping (2014)
      Al2O3 and SnO2 additives are introduced into the Ni–YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, ...
    • Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
      Qu, J.; Wang, W.; Chen, Y.; Deng, X.; Shao, Zongping (2016)
      In this study, some basic oxide additives are introduced into the conventional Ni–Ce0.8Sm0.2O1.9 (SDC) cermet anodes of solid oxide fuel cells (SOFCs) for using methane as the fuel. The effects of incorporating basic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.