Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
(Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d, or BSCF(1 + x), (0 = x = 0.3) oxides were synthesized and investigated as cathodes for intermediate-temperature solid-oxide fuel cells. The A-site cation excess in BSCF(1 + x) resulted in a lattice expansion and the creation of more active sites for oxygen reduction reaction due to the lowered valence states of the B-site ions and the increased oxygen vacancy concentration, which improved the oxygen adsorption process. On the other hand, the A-site excess could also result in higher resistances for oxygen adsorption (due to the formation of BaO and/or SrO impurities), and oxygen-ion transfer (by facilitating the solid-phase reaction between the cathode and the electrolyte). By taking all these factors into account, we found BSCF1.03 to be the optimal composition, which lead to a peak power density of 1026.2 ± 12.7 mW cm-2 at 650 °C for a single cell. © 2008 Acta Materialia Inc.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Liu, Yu ; Wang, Wei ; Xu, Xiaomin ; Marcel Veder, Jean-Pierre; Shao, Zongping (2019)Metal oxides have been extensively applied as heterogeneous catalysts in various chemical processes, including conventional heterogeneous catalysis, photocatalysis, and membrane catalysis. The catalytic performance of an ...
-
Wang, X.; Li, Xinyong ; Mu, J.; Fan, S.; Chen, X.; Wang, L.; Yin, Z.; Tade, Moses ; Liu, Shaomin (2019)Copyright © 2019 American Chemical Society. Oxygen vacancy-rich porous Co3O4 nanosheets (OV-Co3O4) with diverse surface oxygen vacancy contents were synthesized via facile surface reduction and applied to NO reduction ...