Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Oxygen Vacancy-rich Porous Co3O4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure-Activity Relationship and Performance Enhancement Mechanism

    Access Status
    Fulltext not available
    Authors
    Wang, X.
    Li, Xinyong
    Mu, J.
    Fan, S.
    Chen, X.
    Wang, L.
    Yin, Z.
    Tade, Moses
    Liu, Shaomin
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, X. and Li, X. and Mu, J. and Fan, S. and Chen, X. and Wang, L. and Yin, Z. et al. 2019. Oxygen Vacancy-rich Porous Co3O4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure-Activity Relationship and Performance Enhancement Mechanism. ACS Applied Materials and Interfaces. 11 (45): pp. 41988-41999.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.9b08664
    ISSN
    1944-8244
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/79347
    Collection
    • Curtin Research Publications
    Abstract

    Copyright © 2019 American Chemical Society.

    Oxygen vacancy-rich porous Co3O4 nanosheets (OV-Co3O4) with diverse surface oxygen vacancy contents were synthesized via facile surface reduction and applied to NO reduction by CO and CO oxidation. The structure-activity relationship between surface oxygen vacancies and catalytic performance was systematically investigated. By combining Raman, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and O2-temperature programmed desorption, it was found that the efficient surface reduction leads to the presence of more surface oxygen vacancies and thus distinctly enhance the surface oxygen amount and mobility of OV-Co3O4. The electron transfer towards Co sites was promoted by surface oxygen vacancies with higher content. Compared with the pristine porous Co3O4 nanosheets, the presence of more surface oxygen vacancies is beneficial for the catalytic performance enhancement for NO reduction by CO and CO oxidation. The OV-Co3O4 obtained in 0.05 mol L-1 NaBH4 solution (Co3O4-0.05) exhibited the best catalytic activity, achieving 100% NO conversion at 175 °C in NO reduction by CO and 100% CO conversion at 100 °C in CO oxidation, respectively. Co3O4-0.05 exhibited outstanding catalytic stability and resistance to high gas hour space velocity in both reactions. Combining in situ DRIFTS results, the enhanced performance of OV-Co3O4 for NO reduction by CO should be attributed to the promoted formation and transformation of dinitrosyl species and -NCO species at lower and higher temperatures. The enhanced performance of OV-Co3O4 for CO oxidation is due to the promotion of oxygen activation ability, surface oxygen mobility, as well as the enhanced CO2 desorption ability. The results indicate that the direct regulation of surface oxygen vacancies could be an efficient way to evidently enhance the catalytic performance for NO reduction by CO and CO oxidation.

    Related items

    Showing items related by title, author, creator and subject.

    • Syngas production by catalytic partial oxidation of methane over (La0.7A0.3)BO3 (A = Ba, Ca, Mg, Sr, and B = Cr or Fe) perovskite oxides for portable fuel cell applications
      Khine, M.; Chen, L.; Zhang, S.; Lin, J.; Jiang, San Ping (2013)
      Hydrogen is a clean energy carrier for the future. More efficient, economic and small-scale syngas production has therefore important implications not only on the future sustainable hydrogen-based economy but also on the ...
    • Metal-Free Carbocatalysis in Advanced Oxidation Reactions
      Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)
      Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...
    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.