Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The formation of rodingite in the Nagasaki metamorphic rocks at Nomo Peninsula, Kyushu, Japan – Zircon U–Pb and Hf isotopes and trace element evidence

    Access Status
    Fulltext not available
    Authors
    Fukuyama, M.
    Ogasawara, M.
    Dunkley, Daniel
    Wang, K.
    Lee, D.
    Hokada, T.
    Maki, K.
    Hirata, T.
    Kon, Y.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fukuyama, M. and Ogasawara, M. and Dunkley, D. and Wang, K. and Lee, D. and Hokada, T. and Maki, K. et al. 2014. The formation of rodingite in the Nagasaki metamorphic rocks at Nomo Peninsula, Kyushu, Japan – Zircon U–Pb and Hf isotopes and trace element evidence. Island Arc. 23: pp. 281-298.
    Source Title
    Island Arc
    DOI
    10.1111/iar.12086
    ISSN
    10384871
    Faculty
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/19246
    Collection
    • Curtin Research Publications
    Abstract

    Rodingites occur in serpentine-matrix mélange of the Nagasaki metamorphic rocks in Japan. Two types of rodingites can be distinguished on the basis of their mode of occurrence and mineralogical composition. One occurs as dikes, which contain a mineral assemblage of grossular, vesuvianite, diopside, apatite, titanite, and zircon. The other occurs as a block, which consists of zoisite, clinozoisite, diopside, chlorite, apatite, titanite, and zircon. The former type of rodingites posses two types of zircons: prismatic and porous. The prismatic zircons contain primary fluid inclusions indicating their crystallization in the presence of fluids. The porous zircons have extensive fractures filled by zircon, which are indicative of a hydrothermal origin. Both zircon types were thought to have formed under the influence of fluids. U–Pb ion probe analyses of prismatic zircons from the rodingites yield a weighted mean age of 108–105 Ma, suggesting the Early Cretaceous as the time of rodingitization in the subduction zone. Hafnium isotopic compositions of prismatic zircons are close to or overlap with the mid ocean ridge basalt (MORB) Hf isotopic ratio. This indicates that the fluid composition may have been reflected by the MORB composition during rodingitization. On the other hand, the low εHf values (11.8–18.9) of porous zircons suggest that they incorporate a small amount of Hf from fluid contaminated by subducted sediments. The rodingites are significantly enriched in Sr and depleted in large ion lithophile elements (LILE) (Cs, Rb, Ba). The fluid during rodingitization is able to extracts LILEs from the protolith of rodingites and adds Sr to the protolith of rodingites. The high field strength elements (HFSE) (Zr, Th, U, Nb, Ta) concentrations in the rodingites are similar to those of MORB, thus indicate their relatively immobile nature during rodingitization.

    Related items

    Showing items related by title, author, creator and subject.

    • Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China
      Li, H.; Wu, J.; Evans, Noreen; Jiang, W.; Zhou, Z. (2018)
      © 2018 Elsevier B.V. Highly evolved Sn-polymetallic mineralization-related granites are intensively developed in the Nanling Range of South China. In this study, two types of granitic rocks (albite granite and greisenized ...
    • Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites
      Proenza, J.; González-Jiménez, J.; Garcia-Casco, A.; Belousova, E.; Griffin, W.; Talavera, Cristina; Rojas-Agramonte, Y.; Aiglsperger, T.; Navarro-Ciurana, D.; Pujol-Solà, N.; Gervilla, F.; O'Reilly, S.; Jacob, D. (2018)
      © 2018 China University of Geosciences (Beijing) and Peking University. The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report ...
    • Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite-quartz veins in the Sulu belt, China
      Wang, S.; Wang, L.; Brown, M.; Piccoli, P.; Johnson, Tim; Feng, P.; Deng, H.; Kitajima, K.; Huang, Y. (2017)
      Composite granite-quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high-pressure (HP) mineral ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.