Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A simple mathematical predictive tool for estimation of a hydrate inhibitor injection rate

    Access Status
    Fulltext not available
    Authors
    Bahadori, Alireza
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bahadori, A. 2011. A simple mathematical predictive tool for estimation of a hydrate inhibitor injection rate. Nafta Journal. 62 (7-8): pp. 213-223.
    Source Title
    Nafta Journal
    ISSN
    0027755X
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/19473
    Collection
    • Curtin Research Publications
    Abstract

    The formation of hydrates in production, processing facilities and pipelines has been a problem to the natural gas industry, that cost several millions of dollars. Therefore, an understanding of the inception of hydrate formation is necessary to overcoming hydrate problems. The aim of the first step of this study is to develop a simple-to-use correlation for predicting hydrate-forming conditions of sweet natural gases. This simple correlation estimates hydrate formation pressure of sweet natural gases for pressures up to 40 000 kPa and temperatures between 260 K and 298 K as well as molecular weights in the range of 16 to 29. In the next step, novel empirical correlations are developed to predict the required MEG weight percent in the rich solution and the flow-rate for desired depression of the gas hydrate formation temperature. These correlations are generated for a natural gas with relative density of 0.6 at pressures of 3, 5, 7, and 9 MPa, which are applicable to wet gas temperatures of 20, 30, 40, and 50 °C. In order to extend the application of these correlations to wide ranges of natural gas mixtures with specific gravities of up to 0.8, two generalized correction factors are also provided. The accuracy of this simple method is compared with the simulation results obtained by commercial software which showed excellent agreement. In all cases the error percent was approximately 2% and 5% for predicting hydrate formation temperature depression and MEG injection rate, respectively. The fitted equations developed in this study can be of immense practical value for the engineers and scientists to have a quick check on hydrate formation condition of natural gases with or without presence of inhibitor without opting for any experimental measurements. In particular, chemical and process engineers would find the simple equations to be user-friendly with transparent calculations involving no complex expressions.

    Related items

    Showing items related by title, author, creator and subject.

    • Corrosion and hydrate formation in natural gas pipelines
      Obanijesu, Emmanuel Ogo-Oluwa (2012)
      Gas industry annually invests millions of dollars on corrosion inhibitors in order to minimize corrosion implications on flow assurance; however, attention has never been focused on possibilities of these chemicals to ...
    • Development of accurate and reliable correlations for various design parameters in oil and gas processing industries
      Bahadori, Alireza (2011)
      The continuing growth in the importance of oil and gas production and processing overall the globe increase the need for accurate prediction of various parameters and their impact on unit operations, process simulation ...
    • Evaluation of different hydrate prediction software and impact of different MEG products on gas hydrate formation and inhibition
      AlHarooni, K.; Barifcani, Ahmed; Pack, D.; Iglauer, Stefan (2016)
      © 2016, Offshore Technology Conference New hydrate profile correlations for methane gas hydrates were obtained computationally (using three different hydrate prediction software packages) and experimentally (with three ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.