Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A study of Indian limestones for sulfur capture in FBC plants: Particle size sensitivity of sulfation behavior

    Access Status
    Fulltext not available
    Authors
    Jammulamadaka, H.
    Vuthaluru, Hari
    French, D.
    Pisupati, S.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jammulamadaka, H. and Vuthaluru, H. and French, D. and Pisupati, S. 2014. A study of Indian limestones for sulfur capture in FBC plants: Particle size sensitivity of sulfation behavior. Fuel. 161: pp. 376-383.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2015.06.049
    ISSN
    0016-2361
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/19593
    Collection
    • Curtin Research Publications
    Abstract

    India generates about 59% of its electricity from coal (EIA, 2014) [1]. Most of the coal available in India is of low quality, high ash and low calorific value. Fluidized bed combustion is an appropriate technology to utilize these low quality coals. Currently there are no emission regulations for SO2 emissions from power plants. However, SO2 control is becoming a requirement for some projects funded by International agencies to control air emissions. For the first time, five limestone samples from various parts of India that are currently being used in fluidized bed power plants are characterized as sorbents for sulfur capture behavior in a TGA. These limestones were identified as Sorbents A–E, and were characterized for their physical properties (porosity and pore size distribution, surface area), chemical composition analysis, petrographic characteristics, and mineral structural features using XRD. Analytical results indicated that the particle size of the sorbents plays a critical role in the sulfation behavior of the sorbents with some sorbents are more sensitive to particle size than the others. Hot Stage Microscopy observations indicated that this sensitivity was due to the formation of thermally activated fractures (TIFs) at fluidized bed temperatures. BET surface area and BJH pore diameter tests performed on the five sorbents indicated that Sorbent A had the highest surface area of all the limestones and large also the pore diameter.After comparing the BET data with the TGA sulfation data, it appears that Sorbent B might be subjected to the pore-plugging effect due to its small pore diameter. Sorbent C and Sorbent E had low BET surface area and high BJH pore diameter suggesting that although they may not experience much diffusion resistance, due to the low surface area, their sulfur utilization might be limited for coarse particle sizes. The sulfation behavior of these Indian limestones is compared with that of some US limestones with similar physical, chemical and petrographical properties.

    Related items

    Showing items related by title, author, creator and subject.

    • Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents
      Foo, Henry; Tan, Inn Shi; Mohamed, A.R.; Lee, K.T. (2020)
      © 2019 Elsevier Ltd On the quest of finding ideal sorbent for post-combustion CO2 capture, calcium-based sorbent seems to have the potential, but often it cannot sustain its reactivity, especially after repeated cycle of ...
    • Effect of particle size on high-pressure methane adsorption of coal
      Zou, J.; Rezaee, Reza (2016)
      Adsorbed gas cannot be neglected in the evaluation of coalbed methane and shale gas since a significant proportion of gas is stored in the form of adsorbed gas. Adsorbed methane of coal and shale has been widely studied ...
    • A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion
      Liu, K.; Ostadhassan, M.; Sun, L.; Zou, J.; Yuan, Yujie; Gentzis, T.; Zhang, Y.; Carvajal-Ortiz, H.; Rezaee, Reza (2019)
      Small angle neutron scattering (SANS) analysis was performed on six Bakken Shale samples with different maturities to reveal the complexities in the pore structure. Pore size distribution (PSD), porosity and specific ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.