Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Design and analysis of nano-structured gratings for conversion efficiency improvement in gaas solar cells

    245728_245728.pdf (3.744Mb)
    Access Status
    Open access
    Authors
    Das, Narottam
    Islam, Syed
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Das, N. and Islam, S. 2016. Design and analysis of nano-structured gratings for conversion efficiency improvement in gaas solar cells. Energies. 9 (9): 690.
    Source Title
    Energies
    DOI
    10.3390/en9090690
    School
    Department of Electrical and Computer Engineering
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/

    URI
    http://hdl.handle.net/20.500.11937/19612
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 by the authors; licensee MDPI.This paper presents the design and analysis of nano-structured gratings to improve the conversion efficiency in GaAs solar cells by reducing the light reflection losses. A finite-difference time domain (FDTD) simulation tool is used to design and simulate the light reflection losses of the subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures perform as an excellent alternative antireflective (AR) coating due to their capacity to reduce the reflection losses in GaAs solar cells. It allows the gradual change in the refractive index that confirms an excellent AR and the light trapping properties, when compared with the planar thin film structures. The nano-rod structure performs as a single layer AR coating, whereas the triangular (i.e., conical or perfect cone) and parabolic (i.e., trapezoidal/truncated cone) shaped nano-grating structures perform as a multilayer AR coating. The simulation results confirm that the reflection loss of triangular-shaped nano-grating structures having a 300-nm grating height and a 830-nm period is about 2%, which is about 28% less than the flat type substrates. It also found that the intermediate (i.e., trapezoidal and parabolic)-shaped structures, the light reflection loss is lower than the rectangular shaped nano-grating structure, but higher than the triangular shaped nano-grating structure. This analysis confirmed that the triangular shaped nano-gratings are an excellent alternative AR coating for conversion efficiency improvement in GaAs solar cells.

    Related items

    Showing items related by title, author, creator and subject.

    • Conversion Efficiency Improvement in GaAs Solar Cells
      Das, Narottam; Islam, Syed (2014)
      The finite-difference time domain (FDTD) tool is used to simulate the reflection losses of subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures act as an excellent alternative antireflective (AR) ...
    • Optimization of nano-grating structure to reduce the reflection losses in gaas solar cells
      Das, Narottam; Islam, Syed (2012)
      In this paper, finite-difference time domain (FDTD) method is used to simulate the reflection losses of subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures make an excellent alternative antireflective ...
    • Analysis of Incident Light Angles on Nanograting Structure for Minimizing Reflection Losses in GaAs Solar Cells
      Das, Narottam; Charoenpitaks, Korawat; Islam, Syed (2013)
      Subwavelength grating (SWG) structures make an excellent alternative antireflective (AR) coating due to its capacity to reduce the reflection losses in GaAs solar cells. The SWG structures allow the gradual change in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.