Analysis of Incident Light Angles on Nanograting Structure for Minimizing Reflection Losses in GaAs Solar Cells
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
Additional URLs
ISBN
Collection
Abstract
Subwavelength grating (SWG) structures make an excellent alternative antireflective (AR) coating due to its capacity to reduce the reflection losses in GaAs solar cells. The SWG structures allow the gradual change in refractive index that confirms an excellent AR coating and the light trapping properties when compare with planar thin film structures. Finite-difference time domain (FDTD) method is used to simulate the reflection losses of the SWG structure in GaAs solar cells. The FDTD simulation results show that the slightly change of incident angle affect the reflection losses of all nano-grating structure. The simulation results also confirmed that the reflection loss of nano-grating structure maintained optimum within ~±5° of incident angle tolerance for the grating height over 300-nm for minimizing the reflection losses in GaAs solar cells.
Related items
Showing items related by title, author, creator and subject.
-
Das, Narottam; Islam, Syed (2014)The finite-difference time domain (FDTD) tool is used to simulate the reflection losses of subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures act as an excellent alternative antireflective (AR) ...
-
Das, Narottam; Islam, Syed (2016)© 2016 by the authors; licensee MDPI.This paper presents the design and analysis of nano-structured gratings to improve the conversion efficiency in GaAs solar cells by reducing the light reflection losses. A finite-difference ...
-
Das, Narottam; Islam, Syed (2012)In this paper, finite-difference time domain (FDTD) method is used to simulate the reflection losses of subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures make an excellent alternative antireflective ...