Computational Stability Analysis of a Channel Flow with a Large Deformation Compliant Insert
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
We consider a fluid-conveying channel with a compliant insert, or wall, undergoing flow-induced deformations. The objective is to understand the mechanism that can cause selfexcited oscillations of a fundamental system that underpins a host of both engineered (e.g. flexible-pipes, membrane filters) and biomechanical (e.g. blood flow, airway flow) applications. The computational model is developed using the open-source fluid-structure interaction software oomph-lib that accounts for unsteady laminar flow interacting with large-amplitude deformations of a thin flexible wall. The fluid loading on the compliant wall comprises both pressure and viscous stresses while the wall mechanics includes flexural and tensile forces. The discretised equations for the coupled fluid and structural dynamics are combined to yield a single monolithic matrix differential equation for fluid and wall variables, which is solved through a timestepping procedure. We present a brief summary of validations performed that demonstrate the appropriateness of oomph-lib as a modelling tool for the system. Cases are then presented to contrast the system in stable and unstable conditions and we offer an explanation of the physical causes of non-linear saturated oscillation by examining the nature of wall deformations and their effect on the pressure gradient along the wall. We surmise that instability occurs principally through fluctuating energy transfers between wall and fluid that are driven by separation-point changes over each cycle of oscillation.
Related items
Showing items related by title, author, creator and subject.
-
Lai, Lawrence; Lucey, Anthony; Elliott, Novak; Pitman, Mark (2011)The objective of this paper is to assess the suitability of a new, open-source, Finite Element Modelling (FEM) program called Object-Oriented Multi-Physics Finite-Element Library (oomph-lib)to study the Fluid-Structure ...
-
Prent, Alexander ; Beinlich, Andreas ; Raimondo, T.; Kirkland, Chris ; Evans, Noreen ; Putnis, Andrew (2020)Mylonitic shear zones crosscutting homogenous granitoids can retain evidence of fluid-driven metasomatic retrogression and reactivation. However, the relationships between fluid-rock interaction, retrogression, deformation ...
-
Tsigklifis, Konstantinos; Lucey, Anthony (2017)The time-asymptotic linear stability of pulsatile flow in a channel with compliant walls is studied together with the evaluation of modal transient growth within the pulsation period of the basic flow as well as non-modal ...