Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge

    Access Status
    Fulltext not available
    Authors
    Cavosie, Aaron
    Kita, N.
    Valley, J.
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cavosie, A. and Kita, N. and Valley, J. 2009. Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. American Mineralogist. 94 (7): pp. 926-934.
    Source Title
    American Mineralogist
    DOI
    10.2138/am.2009.2982
    ISSN
    0003-004X
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/20133
    Collection
    • Curtin Research Publications
    Abstract

    The oxygen-isotope composition of the Earth's upper mantle is an important reference for understanding mantle and crust geochemical cycles. Olivine is the most commonly used mineral for determining the influence of crustal processes on the oxygen-isotope ratio (d18O) of primitive rocks, however it is an uncommon mineral in continental crust and readily alters at or near Earth's surface. Here we report the first measurements of oxygen-isotope ratios in zircon from oceanic crust exposed at a mid-ocean ridge. Measurements of d18O and trace elements were made by ion microprobe on zircon in polished rock chips of gabbro and veins in serpentinized peridotite drilled from the Mid-Atlantic Ridge. The zircon grains contain both oscillatory and sector growth zoning, features characteristic of magmatic zircon. Values of d18O (zircon) = 5.3 ± 0.8‰ (2 st. dev., n = 68) for the population are consistent with the interpretation that these grains are igneous in origin and formed in high-temperature isotopic equilibrium with mantle oxygen. The d18O values demonstrate that zircon in oceanic crust preserves primitive d18O in spite of sub-solidus alteration of the whole rock. The fact that the primitive d18O (zircon) values fall in a narrow range (5.3 ± 0.8‰) strengthens the use of oxygen isotopes in zircon as a tracer to identify processes of exchange in a wide range of modern and ancient crustal environments, including subducted oceanic crust (eclogite), and also in the oldest known pieces of Earth, >3900 million-year-old detrital zircon grains from Western Australia.

    Related items

    Showing items related by title, author, creator and subject.

    • Evidence for extremely rapid magma ocean crystallization and crust formation on Mars
      Bouvier, L.; Costa, M.; Connelly, J.; Jensen, N.; Wielandt, D.; Storey, M.; Nemchin, Alexander; Whitehouse, M.; Snape, J.; Bellucci, J.; Moynier, F.; Agranier, A.; Gueguen, B.; Schönbächler, M.; Bizzarro, M. (2018)
      The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation ...
    • Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna
      Kirkland, Chris; Smithies, R.; Spaggiari, C.; Wingate, M.; Quentin de Gromard, R.; Clark, Christopher; Gardiner, Nicholas; Belousova, E. (2017)
      The crystalline basement beneath the Cretaceous to Cenozoic Bight and Eucla Basins, in Western Australia has received comparatively little attention even though it lies on the eastern margin of one of the most mineral ...
    • The burning heart - The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia
      Howard, H.; Smithies, R.; Kirkland, Chris; Kelsey, D.; Aitken, A.; Wingate, M.; Quentin de Gromard, R.; Spaggiari, C.; Maier, W. (2015)
      The Musgrave Province is one of the most geodynamically significant of Australia's Proterozoic orogenic belts, lying at the intersection of the continent's three cratonic elements - the West, North and South Australian ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.