Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Late early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization

    Access Status
    Fulltext not available
    Authors
    Wang, Q.
    Li, X.
    Jia, X.
    Wyman, D.
    Tang, G.
    Li, Zheng-Xiang
    Ma, L.
    Yang, Y.
    Jiang, Z.
    Gou, G.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, Qiang and Li, Xian-Hua and Jia, Xiao-Hui and Wyman, Derek and Tang, Gong-Jian and Li, Zheng-Xiang and Ma, Lin and Yang, Yue-Heng and Jiang, Zi-Qi and Gou, Guo-Ning. 2012. Late early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization. Chemical Geology. 328: pp. 222-243.
    Source Title
    Chemical Geology
    DOI
    10.1016/j.chemgeo.2012.04.029
    ISSN
    0009-2541
    URI
    http://hdl.handle.net/20.500.11937/20164
    Collection
    • Curtin Research Publications
    Abstract

    This paper reports on a rare magmatic suite of adakitic rocks and associated magnesian and potassium-rich magmatic enclaves and dikes, which occur in the Tunchang–Fengmu area, Hainan Island (Southeast China). LA-ICP-MS zircon U–Pb age data show that they were generated in the late Early Cretaceous (~107 Ma). The adakitic rocks, consisting mainly of granodiorites and biotite granites, are high-K calcalkaline and have low Mg# values (0.27–0.50). They are geochemically similar to slab-derived adakites, e.g., with high SiO2, Al2O3, Sr, Sr/Y and La/Yb values, low Y and Yb contents, and negligible Eu and positive Sr anomalies. They also have relatively uniform (87Sr/86Sr)i (0.7086–0.7096), (206Pb/204Pb)i (18.50–18.61), (207Pb/204Pb)i (15.56–15.64) and (208Pb/204Pb)i (38.17–38.44) isotope ratios, with slightly variable εNd(t) (-3.85 to -6.55) and zircon in situ εHf(t) (-4.7 to +1.7) values. The mafic enclaves and dikes display disequilibrium textures (e.g., multiple-zoned clinopyroxene with low-MgO rims in contact with perthite and quartz microcrystals). They are high-K calc-alkaline and shoshonitic, and all but one sample have high Mg# (0.63–0.72) values. These mafic rocks are characterized by light rare earth element enrichment and heavy rare earth element (REE) depletion, negligible Eu and Sr and positive Pb anomalies, and Nb and Ta depletion. They have slightly more variable initial 87Sr/86Sr isotope ratios (0.7064–0.7086), εNd(t) (-5.1 to +0.1) values, and (206Pb/204Pb)i (18.35–18.50), (207Pb/204Pb)i (15.45–15.59) and (208Pb/204Pb)i (38.18–38.70) ratios.One mafic dike sample has zircon in situ εHf(t) values (-4.94 to -2.42) similar to those of adakitic rocks (-4.7 to +1.7) in the area. We suggest that the adakitic rocks were most likely generated by partial melting of newly underplated basaltic lower crust with arc-like geochemical characteristics, and the primitive compositions of the mafic enclaves and dikes likely originated from lithospheric + asthenospheric mantle sources metasomatized by subducted oceanic sediments or a relatively juvenile lithospheric mantle source. Mantle-derived primitive magmas likely underwent mixing at depth with minor crustally-derived felsic magmas before being injected into the adakiticmagma chamber. Such injections may have broken up the magma into discrete globules and convective motion distributed the enclaves through the adakitic host. Asthenosphere upwelling due to the roll-back of the subducted Paleo-Pacific plate likely triggered the coeval late Early Cretaceous crust- and mantle-derived magmatism, resulting in the magma hybridization observed on Hainan Island.

    Related items

    Showing items related by title, author, creator and subject.

    • Late Carboniferous high εNd(t)– εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth
      Tang, G.; Wang, Q.; Wyman, D.; Li, Zheng-Xiang; Zhao, Z.; Yang, Y. (2012)
      We report results of petrologic, geochronological and geochemical investigation of the Late Carboniferous diorites, granodiorites, amphibole (Am)-bearing granites, and associated dioritic and monzonitic enclaves and mafic ...
    • Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications
      Lu, Yong-Jun; Kerrich, Robert; McCuaig, T. Campbell; Li, Zheng-Xiang; Hart, Craig J.R.; Cawood, Peter A.; Hou, Zeng-Qian; Bagas, Leon; Cliff, John; Belousova, Elena A.; Tang, Suo-Han (2013)
      Coeval potassic adakite-like and shoshonitic felsic intrusions in the western Yunnan province of SW China are spatially and temporally associated with Eocene–Oligocene shoshonitic mafic volcanic rocks. The shoshonitic ...
    • Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U–Pb age and Hf–O isotope evidence
      Yang, J.; Sun, J.; Zhang, J.; Wilde, Simon (2012)
      Major and trace element, whole rock Sr‐, Nd‐and Hf‐isotopes and zircon U–Pb age and Hf–O isotope data have been determined for mafic to felsic intrusive rocks from the Late Triassic Mayihe (MYH), Longtou–Chaxinzi–Xiaoweishahe ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.