Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications

    Access Status
    Open access via publisher
    Authors
    Lu, Yong-Jun
    Kerrich, Robert
    McCuaig, T. Campbell
    Li, Zheng-Xiang
    Hart, Craig J.R.
    Cawood, Peter A.
    Hou, Zeng-Qian
    Bagas, Leon
    Cliff, John
    Belousova, Elena A.
    Tang, Suo-Han
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lu, Yong-Jun and Kerrich, Robert and McCuaig, T. Campbell and Li, Zheng-Xiang and Hart, Craig J.R. and Cawood, Peter A. and Hou, Zeng-Qian et al. 2013. Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology. 54 (7): pp. 1309-1348.
    Source Title
    Journal of Petrology
    DOI
    10.1093/petrology/egt013
    ISSN
    0022-3530
    URI
    http://hdl.handle.net/20.500.11937/8241
    Collection
    • Curtin Research Publications
    Abstract

    Coeval potassic adakite-like and shoshonitic felsic intrusions in the western Yunnan province of SW China are spatially and temporally associated with Eocene–Oligocene shoshonitic mafic volcanic rocks. The shoshonitic syenite and quartz monzonite intrusions are characterized by high K2O contents (4•9–6•8 wt %) and K2O/Na2O ratios (1•1–1•7), high Y (1•7–34•8 ppm) and Yb (1•50–3•16 ppm) contents, nearly flat heavy rare earth element (HREE) patterns and moderate Eu anomalies (Eu/Eu* = 0•65–0•78). The potassic adakite-like granite and quartz monzonite intrusions are characterized by enrichment in light rare earth elements (LREE), depletion in HREE and fractionated HREE patterns, high Sr (328–1423 ppm), Sr/Y (38–243) and La/Yb (23–62), and low Y and Yb contents. The shoshonitic syenite and quartz monzonites have the same Sr–Nd–Pb isotope compositions as the shoshonitic mafic volcanic rocks. They define linear trends on Harker diagrams, and have similar REE and trace element patterns to the shoshonitic mafic volcanic rocks. These observations suggest that the shoshonitic syenite and quartz monzonite magmas were differentiated from parental shoshonitic mafic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas originated from a metasomatized lithospheric mantle source.The shoshonitic syenite and quartz monzonites have higher magmatic zircon δ18O values (6•26–7•05‰) than the mantle, which suggests some 18O enrichment during earlier subduction-related metasomatism of their lithospheric mantle source. The potassic adakite-like granites have Sr–Nd–Pb isotopic compositions that overlap those of lower-crustal amphibolites. They have low Mg#, MgO, Ni and Cr contents, abundant inherited zircons, high zircon εHf (0–5•5) and mantle-like δ18O (4•78–6•25‰) values. These granites were plausibly derived by partial melting of a thickened, potassic, mafic, lower crust with minor input from an older igneous felsic component. The potassic adakite-like quartz monzonites contain abundant mafic microgranular enclaves, and have transitional major and trace element characteristics between the adakite-like granite and the shoshonitic mafic magma.The quartz monzonites generally have higher Mg#, MgO, Ni and Cr contents than the lower crust-derived adakite-like rocks. They have no inherited zircons and have uniform zircon εHf and δ18O values. It is suggested that they were derived by variable degrees of mixing between lower-crustal melts and shoshonitic mafic magmas. The coeval shoshonitic and potassic adakite-like rocks appear to be associated with thinning of overthickened lithospheric mantle along the trans-lithospheric Jinsha suture following the collision between India and Asia. This lithospheric thinning could have resulted in the upwelling of the asthenosphere beneath western Yunnan, which induced partial melting of the residual metasomatized lithospheric mantle as well as the thickened lower crust in the Eocene.

    Related items

    Showing items related by title, author, creator and subject.

    • Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources, and Implications for Continental Collision Metallogeny
      Lu, Y.; Kerrich, R.; Kemp, A.; McCuaig, T.; Hou, Z.; Hart, C.; Li, Zheng-Xiang; Cawood, P.; Bagas, L.; Yang, Z.; Cliff, J.; Belousova, E.; Jourdan, Fred; Evans, Noreen (2013)
      The Yao’an porphyry Au system, Machangqing porphyry Cu-Mo system, and Beiya porphyry-skarn Au system, are spatially and temporally associated with potassic felsic intrusions emplaced during the Eocene to Oligocene epochs ...
    • Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau
      Chen, B.; Long, X.; Wilde, Simon; Yuan, C.; Wang, Q.; Xia, X.; Zhang, Z. (2017)
      © 2017 Elsevier B.V. New zircon U–Pb ages, mineral chemical data, whole-rock geochemistry and Sr–Nd isotopes from the potassium-rich intrusions in the Yunnan area, SW China, were determined to provide constraints on the ...
    • Late early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization
      Wang, Q.; Li, X.; Jia, X.; Wyman, D.; Tang, G.; Li, Zheng-Xiang; Ma, L.; Yang, Y.; Jiang, Z.; Gou, G. (2012)
      This paper reports on a rare magmatic suite of adakitic rocks and associated magnesian and potassium-rich magmatic enclaves and dikes, which occur in the Tunchang–Fengmu area, Hainan Island (Southeast China). LA-ICP-MS ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.