Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Electrochemical impedance spectroscopy, step current polarization, and cyclic voltammetry were applied to investigate the activation and deactivation kinetics of oxygen reduction over a novel La0.8Sr 0.2Sc0.1Mn0.9O3 (LSSM) cathode material. Oxygen vacancies were created after cathodic polarization for a certain period of time. The generating rate was closely related with oxygen partial pressure of surrounding atmosphere (Po2). polarization time, temperature, and voltage. The in situ created oxygen vacancies could propagate both over the surface and into the bulk of the LSSM electrode after a high cathodic polarization. Both chemical oxidation by ambient air and electrochemical oxidation by anodic polarization were exploited to demonstrate the deactivation mechanism of these in situ created oxygen vacancies. The rate-determining step of oxygen reduction reaction over LSSM electrode before and after the activation was also investigated. It was by oxygen ion surface diffusion at 800 °C in air, while a steady change to an electron-transfer process was observed with decreasing temperature and Po2. © 2008 American Chemical Society.
Related items
Showing items related by title, author, creator and subject.
-
Zhou, W.; Sunarso, J.; Motuzas, J.; Liang, F.; Chen, Z.; Ge, L.; Liu, Shaomin; Julbe, A.; Zhu, Z. (2011)In situ high-temperature X-ray diffraction and thermal gravimetric−differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched ...
-
Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)© 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
-
Dong, F.; Ni, M.; He, W.; Chen, Y.; Yang, G.; Chen, D.; Shao, Zongping (2016)The B-site substitution with the minor amount of tin in BaFeO3−δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3−δ (BFS) as a new cathode ...