Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by-nc-nd/3.0/. Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Collection
Abstract
Cotton fabric (CF) reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM) is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.
Related items
Showing items related by title, author, creator and subject.
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Sudarisman (2009)The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
-
Alamri, Hatem; Low, It Meng (2012)Recycled cellulose fibre (RCF) reinforced epoxy composites were fabricated with fibre loadings of 19, 28, 40 and 46 wt%. Results showed that flexural strength, flexural modulus, fracture toughness and impact strength ...