Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes

    212783_212783.pdf (1.669Mb)
    Access Status
    Open access
    Authors
    Chen, Kongfa
    Hyodo, J.
    O'Donnell, Kane
    Rickard, William
    Ishihara, T.
    Jiang, San Ping
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, K. and Hyodo, J. and O'Donnell, K. and Rickard, W. and Ishihara, T. and Jiang, S.P. 2014. Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes. Journal of the Electrochemical Society. 161 (12): pp. F1163-F1170.
    Source Title
    Journal of the Electrochemical Society
    DOI
    10.1149/2.0251412jes
    ISSN
    0013-4651
    School
    Department of Chemical Engineering
    Remarks

    © The Electrochemical Society, Inc. 2014. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in: Chen, K. and Hyodo, J. and O'Donnell, K. and Rickard, W. and Ishihara, T. and Jiang, S.P. 2014. Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society. 161 (12): pp. F1163-F1170..

    URI
    http://hdl.handle.net/20.500.11937/21057
    Collection
    • Curtin Research Publications
    Abstract

    The effect of volatile boron species on the electrocatalytic activity, microstructure and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) cathodes has been studied. The cathodes were heat-treated at 800?C for 7 days in air in the presence of boron species vaporized from borosilicate glass, and were characterized by EIS, SEM, AFM, SIMS, XRD, XPS and ICP-OES. The results have shown that after the heat-treatment in the presence of borosilicate glass, boron deposition occurs mainly on the region near electrode surface, leading to the significant Ba and in particular Sr segregation, microstructure change and phase decomposition. On the other hand, the microstructure of the inner electrode layer is almost intact. Electrode polarization resistance, RE, of an as-prepared BSCF cathode is 0.93 and 0.23 Q cm2 at 650 and 800?C, respectively, and changes to 2.08 and 0.15 Q cm2 after heat-treatment at 800?C for 7 days in the presence of borosilicate glass, respectively. The increase in RE for the O2 reduction reaction on BSCF is much lower than that observed on La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathodes, indicating that BSCF cathodes have a much better tolerance toward boron deposition and poisoning. The limited attack of volatile boron species on BSCF is most likely related to the much slower kinetics of the formation of strontium and barium borates as compared to the formation of lanthanum borates. This study provides a significant insight into design and development of better contaminant-tolerant cathode materials for durable solid oxide fuel cell (SOFC) technologies.

    Related items

    Showing items related by title, author, creator and subject.

    • Chemical compatibility between boron oxides and electrolyte and cathode materials of solid oxide fuel cells
      Chen, Kongfa; Ai, Na; Jiang, San Ping (2013)
      Boron is a key component in glass and glass–ceramic sealants for planar solid oxide fuel cells (SOFCs). In this paper, the chemical compatibility between boron and commonly used electrolyte and cathode materials of SOFCs ...
    • New zinc and bismuth doped glass sealants with substantially suppressed boron deposition andpoisoning for solid oxide fuel cells
      Chen, Kongfa; Fang, L.; Zhang, T.; Jiang, San Ping (2014)
      Borosilicate-based glasses are the most common sealant materials for solid oxide fuel cells (SOFCs). However, boron species vaporizing from glass sealants poison and degrade the electrocatalytic activity of cathodes of ...
    • Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells I. (La,Sr)MnO3 based electrodes
      Chen, Kongfa; Ai, Na; Zhao, L.; Jiang, San Ping (2013)
      The effect of volatile boron species on the microstructure and electrocatalytic activity of conventional (La,Sr)MnO3 (LSM) and nano-structured LSM infiltrated Y2O3-ZrO2 (LSM-YSZ) cathodes of solid oxide fuel cell (SOFC) ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.