Oxygen reduction voltammetry on platinum macrodisk and screen-printed electrodes in ionic liquids: Reaction of the electrogenerated superoxide species with compounds used in the paste of Pt screen-printed electrodes?
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in Electrochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Electrochimica Acta, Vol. 101, (2013). doi: 10.1016/j.electacta.2012.09.104
Collection
Abstract
Screen-printed electrodes (SPEs) are widely investigated as simple, three-electrode planar surfaces for electrochemical sensing applications, and may be ideal for gas sensing purposes when combined with non-volatile room temperature ionic liquids (RTILs). In this report the suitability of SPEs with RTIL solvents has been investigated for oxygen detection. Oxygen reduction has been studied on commercially available platinum SPEs in eight RTILs. Cyclic voltammetric wave shapes were found to be significantly different on Pt SPE surfaces compared to conventional solid Pt macroelectrodes, suggesting a possible reaction of the electrogenerated superoxide with the compounds that make up the ink/paste of the SPE surface. The only RTIL that did not show such drastically different voltammetry was one that contained a pyrrolidinium cation, suggesting a more chemically stable solvent environment compared to the other imidazolium and phosphonium cations studied. The analytical utility was then studied on four SPE surfaces (carbon, gold, platinum and silver) in two RTILs (one with a pyrrolidinium and one with an imidazolium cation) and linear responses were observed between current and % concentration in the range 10–100% O2. This suggests that SPEs may indeed be suitable for oxygen sensing in some RTILs, but significantly more pre-treatment of the surface is required to obtain reliable results. However, the reaction of superoxide with the SPE ink, together with a noticeable deterioration of the signal over time, suggests that this type of sensing platform may only be suitable for “single-use” oxygen sensing applications.
Related items
Showing items related by title, author, creator and subject.
-
Lee, J.; Hussain, G.; Banks, C.; Silvester, Debbie (2017)Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour ...
-
Lee, Junqiao; Arrigan, Damien; Silvester, Debbie (2016)The demonstration of prolonged amperometric detection of oxygen in room-temperature ionic liquids (RTILs) was achieved by the use of mechanical polishing to activate platinum screen-printed electrodes (Pt-SPEs). The RTILs ...
-
Lee, J.; Du Plessis, G.; Arrigan, Damien; Silvester, Debbie (2015)The electrochemical reduction of oxygen (O2) has been studied on commercially-available integrated Pt thin-film electrodes (TFEs). Chemically reversible (but electrochemically quasi-reversible) cyclic voltammetry was ...