Deformed monazite yields high-temperature tectonic ages
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
The deformation of monazite in the polymetamorphic Sandmata granulite complex in India has been investigated by electron backscattered diffraction and sensitive high-resolution ion microprobe (SHRIMP). Quantitative microstructural analyses document the development of deformation twins in {100}, {001}, and Graphic orientations; low-angle (<10°) boundary development associated with dislocation creep; and the development of new grains due to dynamic recrystallization. These data represent the first quantitative evidence of crystal-plastic deformation of natural monazite. SHRIMP U-Th-Pb analysis shows that the host monazite preserves discordant ages as old as 1666 ± 28 Ma, along a trend from ca. 1720 Ma to ca. 1000 Ma, with increasingly discordant ages recorded in zones of higher lattice distortion. Domains of recrystallized new grains within the monazite record a tightly clustered concordia age of 970 ± 14 Ma. This age is interpreted to represent the timing of monazite dynamic recrystallization associated with deformation of the host protolith, and is consistent with partial resetting and Pb loss from domains deforming by dislocation creep. The complex, but systematic, relationship between microstructure and age data in monazite provide the first direct evidence of Pb isotope resetting during deformation. The approach illustrates a new methodology for the dating of deformation events in high-grade metamorphic rocks, which are typically difficult to constrain.
Related items
Showing items related by title, author, creator and subject.
-
Erickson, T.; Timms, Nicholas Eric; Kirkland, Chris; Tohver, E.; Cavosie, Aaron; Pearce, M.; Reddy, Steven (2017)Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics ...
-
Fougerouse, Denis ; Cavosie, Aaron ; Erickson, Timmons ; Reddy, Steven ; Cox, M.A.; Saxey, David ; Rickard, William ; Wingate, M.T.D. (2021)To test the potential of deformation twins to record the age of impact events, micrometre-scale size mechanical twins in shocked monazite grains from three impact structures were analyzed by atom probe tomography (APT). ...
-
Erickson, T.; Cavosie, Aaron; Pearce, M.; Timms, N.; Reddy, S. (2016)Shock deformation microstructures in monazite have been systematically characterized for the first time in grains from the Vredefort impact structure in South Africa. Electron backscatter diffraction mapping has identified ...