Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction

    Access Status
    Fulltext not available
    Authors
    Zhang, Z.
    Zhou, W.
    Chen, Y.
    Chen, D.
    Chen, J.
    Liu, Shaomin
    Jin, W.
    Shao, Zongping
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, Z. and Zhou, W. and Chen, Y. and Chen, D. and Chen, J. and Liu, S. and Jin, W. et al. 2015. Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. ACS Applied Materials and Interfaces. 7 (41): pp. 22918-22926.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.5b05812
    ISSN
    1944-8244
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/21553
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 American Chemical Society. A novel method based on beneficial phase reaction for developing composite membranes with high oxygen permeation flux and favorable stability was proposed in this work. Various Ce0.8Sm0.2O2-d (SDC) + SrCO3+Co3O4 powders with different SDC contents were successfully fabricated into membranes through high temperature phase reaction. The X-ray diffraction (XRD) measurements suggest that the solid-state reaction between the SDC, SrCO3 and Co3O4 oxides occurred at the temperature for membrane sintering, leading to the formation of a highly conductive tetragonal perovskite phase SmxSr1-xCoO3-d. The morphology and elemental distribution of the dual-phase membranes were characterized using back scattered scanning electron microscopy and energy dispersive X-ray spectroscopy (BSEM-EDX). The oxygen bulk diffusivity and surface exchange properties of the materials were investigated via the electrical conductivity relaxation technique, which supported the formation of conductive phases. The SDC+20 wt % SrCO3+10.89 wt % Co3O4 membrane exhibited the highest permeation flux among the others, reaching 0.93 mL cm-2 min-1 [STP = standard temperature and pressure] under an air/helium gradient at 900 °C for a membrane with a thickness of 0.5 mm. In addition, the oxygen permeation flux remained stable during the long-time test. The results demonstrate the beneficial phase reaction as a practical method for the development of high-performance dual-phase ceramic membranes.

    Related items

    Showing items related by title, author, creator and subject.

    • Improvement of oxygen permeation through microchanneled ceramic membranes
      Shao, Xin; Dong, Dehua; Parkinson, Alan; Li, Chun-Zhu (2014)
      Microchanneled membranes have demonstrated high oxygen permeation fluxes owing to the shortened oxygen permeation distance and the enlarged membrane surface area. In this study, further improvement of the oxygen permeation ...
    • Highly stable external short-circuit-assisted oxygen ionic transport membrane reactor for carbon dioxide reduction coupled with methane partial oxidation
      Zhang, Kun; Liu, Lihong; Sunarso, J.; Yu, H.; Pareek, V.; Liu, Shaomin (2014)
      A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ...
    • Highly Stable External Short-Circuit-Assisted Oxygen Ionic Transport Membrane Reactor for Carbon Dioxide Reduction Coupled with Methane Partial Oxidation
      Zhang, K; Liu, Lihong; Sunarso, J.; Yu, H.; Pareek, Vishnu; Liu, Shaomin (2014)
      A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.