Show simple item record

dc.contributor.authorCaspari, Eva
dc.contributor.authorQi, Q.
dc.contributor.authorLopes, Sofia
dc.contributor.authorLebedev, Maxim
dc.contributor.authorGurevich, Boris
dc.contributor.authorRubino, J.
dc.contributor.authorVelis, D.
dc.contributor.authorClennel, M.
dc.contributor.authorMüller, T.
dc.date.accessioned2017-01-30T12:26:15Z
dc.date.available2017-01-30T12:26:15Z
dc.date.created2014-12-11T07:08:44Z
dc.date.issued2014
dc.identifier.citationCaspari, E. and Qi, Q. and Lopes, S. and Lebedev, M. and Gurevich, B. and Rubino, J. and Velis, D. et al. 2014. Wave attenuation in partially saturated porous rocks: New observations and interpretations across the scales. The Leading Edge. 33 (6): pp. 606-614.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/21619
dc.identifier.doi10.1190/tle33060606.1
dc.description.abstract

Seismic waves propagating in porous rocks saturated with two immiscible fluids can be strongly attenuated. Predicting saturation effects on seismic responses requires a sound understanding of attenuation and velocity dependencies on the fluid distribution. Decoding these effects involves interpreting laboratory experiments, analyzing well-log data, and performing numerical simulations. Despite striking differences among scales, flow regimes, and frequency bands, some aspects of wave attenuation can be explained with a single mechanism — wave-induced pressure diffusion. Different facets of wave-induced pressure diffusion can be revealed across scales.

dc.publisherSociety of Exploration Geophysicists
dc.titleWave attenuation in partially saturated porous rocks: New observations and interpretations across the scales
dc.typeJournal Article
dcterms.source.volume33
dcterms.source.startPage606
dcterms.source.endPage615
dcterms.source.issn1070-485X
dcterms.source.titleThe Leading Edge
curtin.departmentDepartment of Exploration Geophysics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record