Show simple item record

dc.contributor.authorScappucci, G.
dc.contributor.authorKlesse, W.
dc.contributor.authorYeoh, L.A.
dc.contributor.authorCarter, Damien
dc.contributor.authorWarschkow, O.
dc.contributor.authorMarks, Nigel
dc.contributor.authorJaeger, D.L.
dc.contributor.authorCapellini, G.
dc.contributor.authorSimmons, M.Y.
dc.contributor.authorHamilton, A.
dc.date.accessioned2017-01-30T12:27:38Z
dc.date.available2017-01-30T12:27:38Z
dc.date.created2015-09-09T20:00:41Z
dc.date.issued2015
dc.identifier.citationScappucci, G. and Klesse, W. and Yeoh, L.A. and Carter, D. and Warschkow, O. and Marks, N. and Jaeger, D.L. et al. 2015. Bottom-up assembly of metallic germanium. Scientific Reports. 5: 12948.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/21833
dc.identifier.doi10.1038/srep12948
dc.description.abstract

Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω ∙ cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

dc.publisherNature Publishing Group
dc.titleBottom-up assembly of metallic germanium
dc.typeJournal Article
dcterms.source.volume5
dcterms.source.startPage1
dcterms.source.endPage7
dcterms.source.issn2045-2322
dcterms.source.titleScientific Reports
curtin.note

This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/

curtin.departmentNanochemistry Research Institute
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record