Fluid-structure Interaction Analysis of Representative Left Coronary Artery Models with Different Angulations
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISSN
Collection
Abstract
The aim of this study is to elucidate the correlation between coronary artery angulation and local mechanical forces at the vicinity of bifurcation using a coupled fluid-structure interaction (FSI) modelling approach. Four representative left coronary arteries with different angles ranging from 75° to 120° were used to demonstrate the relation between circumferential stress and angulation. In order to increase simulation fidelity, the arterial wall was modelled as an isotropic hyperelastic material, and physiologically reasonable waveforms were imposed at the boundaries. The results show that circumferential stress is positively correlated with left coronary artery angulation. In addition, the hemodynamic differences between the FSI modelling and rigid wall modelling was also addressed and analysed through comparing those two modelling techniques. The instantaneous wall shear stress (WSS) distributions were substantially affected by the arterial wall compliance.
Related items
Showing items related by title, author, creator and subject.
-
Chaichana, Thanapong (2012)Coronary artery disease is the leading cause of death in advanced countries. Coronary artery disease tends to develop at locations where disturbed flow patterns occur, such as the left coronary artery. Haemodynamic change ...
-
Sun, Zhonghua; Chaichana, T. (2017)Background: To investigate the correlation between left coronary bifurcation angle and coronary stenosis as assessed by coronary computed tomography angiography (CCTA)-generated computational fluid dynamics (CFD) analysis ...
-
Chachaina, T.; Sun, Zhonghua; Jewkes, James (2010)The aim of this study is to investigate the hemodynamic effect of the angulations in the left coronary bifurcation on subsequent development of coronary artery disease. Eight 3D left coronary artery models were generated ...